Publications by authors named "Xiang-Dong Fu"

Article Synopsis
  • Mutations in the Cockayne Syndrome group B (CSB) gene lead to cancer in mice but cause premature aging and neurodevelopmental defects in humans, indicating different impacts in the two species.
  • CSB is a chromatin remodeler involved in gene regulation and DNA repair, but its absence affects RNA polymerase II elongation, particularly at certain DNA sequences, contributing to genome instability.
  • The study highlights that the unique human symptoms of Cockayne Syndrome may arise from longer neuronal genes prone to R-loop formation, which are more common in humans than in mice, reflecting evolutionary differences in mammalian genomes.
View Article and Find Full Text PDF
Article Synopsis
  • The transcription factor RUNX1 is crucial for blood cell formation and is often mutated in blood cancers, particularly in its runt homology domain, leading to loss of function.
  • Recent research characterized mutations outside the RHD, finding that C-terminus mutations frequently appear in blood disorders and tend to produce stable, non-functional proteins.
  • The study demonstrated that these RUNX1 mutations disrupt normal cellular processes and alter enhancer-promoter interactions, resulting in enhanced MYC expression, which affects blood cell development in unique ways compared to complete RUNX1 loss.
View Article and Find Full Text PDF

Extrachromosomal DNA (ecDNA) promotes cancer by driving copy number heterogeneity and amplifying oncogenes along with functional enhancers. More recent studies suggest two additional mechanisms for further enhancing their oncogenic potential, one via forming ecDNA hubs to augment oncogene expression and the other through acting as portable enhancers to -activate target genes . However, it has remained entirely elusive about how ecDNA explores the three-dimensional space of the nucleus and whether different ecDNA have distinct interacting mechanisms.

View Article and Find Full Text PDF

Cell replacement therapy represents a promising approach for treating neurodegenerative diseases. Contrary to the common addition strategy to generate new neurons from glia by overexpressing a lineage-specific transcription factor(s), a recent study introduced a subtraction strategy by depleting a single RNA-binding protein, Ptbp1, to convert astroglia to neurons not only in vitro but also in the brain. Given its simplicity, multiple groups have attempted to validate and extend this attractive approach but have met with difficulty in lineage tracing newly induced neurons from mature astrocytes, raising the possibility of neuronal leakage as an alternative explanation for apparent astrocyte-to-neuron conversion.

View Article and Find Full Text PDF

PIWI-clade proteins harness piRNAs of 24-33 nt in length. Of great puzzles are how PIWI-clade proteins incorporate piRNAs of different sizes and whether the size matters to PIWI/piRNA function. Here we report that a PIWI-Ins module unique in PIWI-clade proteins helps define the length of piRNAs.

View Article and Find Full Text PDF

In eukaryotic cells, a key RNA processing step to generate mature mRNA is the coupled reaction for cleavage and polyadenylation (CPA) at the 3' end of individual transcripts. Many transcripts are alternatively polyadenylated (APA) to produce mRNAs with different 3' ends that may either alter protein coding sequence (CDS-APA) or create different lengths of 3'UTR (tandem-APA). As the CPA reaction is intimately associated with transcriptional termination, it has been widely assumed that APA is regulated cotranscriptionally.

View Article and Find Full Text PDF

Kinetochore assembly on centromeres is central for chromosome segregation, and defects in this process cause mitotic errors and aneuploidy. Besides the well-established protein network, emerging evidence suggests the involvement of regulatory RNA in kinetochore assembly; however, it has remained elusive about the identity of such RNA, let alone its mechanism of action in this critical process. Here, we report CCTT, a previously uncharacterized long non-coding RNA (lncRNA) transcribed from the arm of human chromosome 17, which plays a vital role in kinetochore assembly.

View Article and Find Full Text PDF
Article Synopsis
  • - RNA binding proteins (RBPs) are crucial in regulating gene expression and are involved in various aspects of RNA metabolism, making them important in both cell function and disease.
  • - The RBP Image Database compiles data on the subcellular locations of 301 RBPs in human liver and cervical cancer cell lines, based on extensive immuno-fluorescence studies.
  • - This database features around 250,000 microscopy images, a curated vocabulary for easy navigation, and a user-friendly interface for quick access to information, and is available for free online.
View Article and Find Full Text PDF

Sulfur (S) is an essential macronutrient for plants and a signaling molecule in abiotic stress responses. It is known that S availability modulates root system architecture; however, the underlying molecular mechanisms are largely unknown. We previously reported an Arabidopsis gain-of-function mutant sulfate utilization efficiency4 (sue4) that could tolerate S deficiency during germination and early seedling growth with faster primary root elongation.

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDSs) are a heterogeneous group of hematologic malignancies with a propensity to progress to acute myeloid leukemia. Causal mutations in multiple classes of genes have been identified in patients with MDS with some patients harboring more than 1 mutation. Interestingly, double mutations tend to occur in different classes rather than the same class of genes, as exemplified by frequent cooccurring mutations in the transcription factor RUNX1 and the splicing factor SRSF2.

View Article and Find Full Text PDF

Postmeiotic spermatids use a unique strategy to coordinate gene expression with morphological transformation, in which transcription and translation take place at separate developmental stages, but how mRNAs stored as translationally inert messenger ribonucleoproteins in developing spermatids become activated remains largely unknown. Here, we report that the RNA binding protein FXR1, a member of the fragile X-related (FXR) family, is highly expressed in late spermatids and undergoes liquid-liquid phase separation (LLPS) to merge messenger ribonucleoprotein granules with the translation machinery to convert stored mRNAs into a translationally activated state. Germline-specific ablation in mice impaired the translation of target mRNAs and caused defective spermatid development and male infertility, and a phase separation-deficient FXR1 mutation in knock-in mice produced the same developmental defect.

View Article and Find Full Text PDF

Two-dimensional high-throughput data have become increasingly common in functional genomics studies, which raises new challenges in data analysis. Here, we introduce a new statistic called Zeta, initially developed to identify global splicing regulators from a two-dimensional RNAi screen, a high-throughput screen coupled with high-throughput functional readouts, and ZetaSuite, a software package to facilitate general application of the Zeta statistics. We compare our approach with existing methods using multiple benchmarked datasets and then demonstrate the broad utility of ZetaSuite in processing public data from large-scale cancer dependency screens and single-cell transcriptomics studies to elucidate novel biological insights.

View Article and Find Full Text PDF

The vascular system is responsible for the communication of information between different organs and the environment as a whole, so that it can coordinate the development of plants and respond to the changes of the environment. The signal substances moving in the vascular system are called long-distance signals. In recent years, it has been found that some long-distance molecular signals, such as microRNA, mRNA, small peptides, hormones, second messengers and proteins, can transmit extracellular stimuli from sensing tissues to target organs, so as to systematically regulate plant development process and environmental response.

View Article and Find Full Text PDF

The diverse functions of WASP, the deficiency of which causes Wiskott-Aldrich syndrome (WAS), remain poorly defined. We generated three isogenic WAS models using patient induced pluripotent stem cells and genome editing. These models recapitulated WAS phenotypes and revealed that WASP deficiency causes an upregulation of numerous RNA splicing factors and widespread altered splicing.

View Article and Find Full Text PDF

R-loops, three-stranded structures containing double-stranded DNA invaded by single-stranded RNA, have been linked to diverse biological processes. They play important roles in regulating gene regulation and DNA repair, contributing to a wide range of diseases. Understanding the formation and dynamic regulation of R-loops is thus a gateway to address many fundamental questions in regulatory biology, which requires the elucidation of the R-loop landscape at the genome scale.

View Article and Find Full Text PDF

During an immune response to microbial infection, CD8+ T cells give rise to short-lived effector cells and memory cells that provide sustained protection. Although the transcriptional programs regulating CD8+ T cell differentiation have been extensively characterized, the role of long noncoding RNAs (lncRNAs) in this process remains poorly understood. Using a functional genetic knockdown screen, we identified the lncRNA Malat1 as a regulator of terminal effector cells and the terminal effector memory (t-TEM) circulating memory subset.

View Article and Find Full Text PDF

CTCF mediates chromatin insulation and long-distance enhancer-promoter (EP) interactions; however, little is known about how these regulatory functions are partitioned among target genes in key biological processes. Here, we show that Ctcf expression is progressively increased during induced pluripotency. In this process, CTCF first functions as a chromatin insulator responsible for direct silencing of the somatic gene expression program and, interestingly, elevated Ctcf expression next ensures chromatin accessibility and contributes to increased EP interactions for a fraction of pluripotency-associated genes.

View Article and Find Full Text PDF

Chemical cross-linking enables rapid identification of RNA-protein and RNA-nucleic acid inter- and intramolecular interactions. However, no method exists to site-specifically and covalently cross-link two user-defined sites within an RNA. Here, we develop RNA-CLAMP, which enables site-specific and enzymatic cross-linking (clamping) of two selected guanine residues within an RNA.

View Article and Find Full Text PDF

Extensive knowledge has been gained on the transcription network controlled by ERα, however, the mechanism underlying ESR1 (encoding ERα) expression is less understood. We recently discovered that the Hippo pathway is required for the proper expression of ESR1. YAP/TAZ are transcription coactivators that are phosphorylated and inhibited by the Hippo pathway kinase LATS.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, containing GBM stem cells (GSCs) that contribute to therapeutic resistance and relapse. Exposing potential GSC vulnerabilities may provide therapeutic strategies against GBM. Here, we interrogated the role of adenosine-to-inosine (A-to-I) RNA editing mediated by adenosine deaminase acting on RNA 1 (ADAR1) in GSCs and found that both ADAR1 and global RNA editomes were elevated in GSCs compared with normal neural stem cells.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play important roles in regulated gene expression and miRNA biogenesis is also subject to regulation, together constituting critical regulatory circuitries in numerous physiological and pathological processes. As a dsRNA binding protein, interleukin enhancer binding factor 3 (ILF3) has been implicated as a negative regulator in miRNA biogenesis, but the mechanism and specificity have remained undefined. Here, combining small-RNA-seq and CLIP-seq, we showed that ILF3 directly represses many miRNAs or perhaps other types of small RNAs annotated in both miRBase and MirGeneDB.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: