Publications by authors named "Xiang Yongjia"

Although gemcitabine (GEM) is the cornerstone of the treatment of pancreatic cancer (PC), GEM resistance frequently arises. Circular RNA (circRNA) circ_0075829 is highly expressed in PC. However, whether circ_0075829 contributes to GEM resistance of PC is largely unknown.

View Article and Find Full Text PDF

Background: Pelvic organ prolapse (POP) is a pelvic floor dysfunction disease which affects females. The volume of pelvic floor muscle, especially the levator ani muscle (LAM), is an important indicator of pelvic floor function. However, muscle volume measurements depend on manual segmentation, which is clinically time-consuming.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) have been widely accepted as critical molecules playing regulatory roles in various biological processes, including proliferation, differentiation and apoptotic/ferroptotic/necrotic cell death. Emerging evidence suggests that ROS may be involved in the induction of epithelial‑to‑mesenchymal transition (EMT), which has been reported to promote cancer stem‑like cell (CSC) generation. Recent data indicate that altered accumulation of ROS is associated with CSC generation, EMT and hypoxia exposure, but the underlying mechanisms are poorly understood.

View Article and Find Full Text PDF

Based on the Fresnel half-wave band interference, a micromachined self-focusing piezoelectric composite ultrasound transducer was proposed in this paper. The theoretical analysis was deduced based on the concept of constructive interference of acoustic waves and electromechanical response of piezoelectric composites. The calculated and simulation results showed that it combined the advantages of composite transducer and plate self-focusing transducer, and can achieve high electromechanical coupling coefficient, low acoustic impedance, high intensity, short focal length and micro size.

View Article and Find Full Text PDF

In order to design a 50MHz intravascular ultrasound (IVUS) transducer with good pulse-echo responses, in this paper, a finite element model (FEM) was built to simulate the transducer acoustic performances with different layer thicknesses. According to comparisons of the acoustic fields and the admittance curves, the optimum thickness parameters are gained. And then, an IVUS PZT transducer with controlled layer thicknesses was fabricated and tested.

View Article and Find Full Text PDF