Costly data movement in terms of time and energy in traditional von Neumann systems is exacerbated by emerging information technologies related to artificial intelligence. In-memory computing (IMC) architecture aims to address this problem. Although the IMC hardware prototype represented by a memristor is developed rapidly and performs well, the sneak path issue is a critical and unavoidable challenge prevalent in large-scale and high-density crossbar arrays, particularly in three-dimensional (3D) integration.
View Article and Find Full Text PDFPhase engineering of two-dimensional transition metal dichalcogenides has received increasing attention in recent years due to its atomically thin nature and polymorphism. Here, we first realize an electric-field-induced controllable phase transition between semiconducting 2H and metallic 1T' phases in MoTe memristive devices. The device performs stable bipolar resistive switching with a cycling endurance of over 10, an excellent retention characteristic of over 10 s at an elevated temperature of 85 °C and an ultrafast switching of ∼5 ns for SET and ∼10 ns for RESET.
View Article and Find Full Text PDFBiological neurons exhibit dynamic excitation behavior in the form of stochastic firing, rather than stiffly giving out spikes upon reaching a fixed threshold voltage, which empowers the brain to perform probabilistic inference in the face of uncertainty. However, owing to the complexity of the stochastic firing process in biological neurons, the challenge of fabricating and applying stochastic neurons with bio-realistic dynamics to probabilistic scenarios remains to be fully addressed. In this work, a novel CuS/GeSe conductive-bridge threshold switching memristor is fabricated and singled out to realize electronic stochastic neurons, which is ascribed to the similarity between the stochastic switching behavior observed in the device and that of biological ion channels.
View Article and Find Full Text PDFAlthough good performance has been reported in shallow neural networks, the application of memristor synapses towards realistic deep neural networks has met more stringent requirements on the synapse properties, particularly the high precision and linearity of the synaptic analog weight tuning. In this study, a LiAlOX memristor synapse was fabricated and optimized to address these demands. By delicately tuning the initial conductance states, 120-level continuously adjustable conductance states were obtained and the nonlinearity factor was substantially reduced from 8.
View Article and Find Full Text PDFTwo-dimensional (2D) materials with both ferroelasticity and negative Poisson's ratios have attracted intensive interest, but it is very rare to have both ferroelasticity and negative Poisson's ratios in a single material. Directional positive and negative Poisson's ratios in a switchable ferroelastic dielectric may enable non-destructive readout in ferroelastic data storage. Herein, we propose 14 kinds of stable 2D semiconductors: AB monolayers (A = Sc, Y, La; B = N, P, As, Sb, Bi) based on first-principles calculations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
Electrocatalysts with high activities toward multiple electrode reactions are scarce and therefore highly sought. Here, we investigate the electrocatalytic performance of the two-dimensional (2D) PtSe monolayer toward hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Our density functional theory calculations show that the PtSe monolayer can serve as a low-Pt-loading trifunctional electrocatalyst with good kinetic and thermal stabilities.
View Article and Find Full Text PDFScintillators are widely utilized for radiation detections in many fields, such as nondestructive inspection, medical imaging, and space exploration. Lead halide perovskite scintillators have recently received extensive research attention owing to their tunable emission wavelength, low detection limit, and ease of fabrication. However, the low light yields toward X-ray irradiation and the lead toxicity of these perovskites severely restricts their practical application.
View Article and Find Full Text PDFAn X-ray detector with high sensitivity would be able to increase the generated signal and reduce the dose rate; thus, this type of detector is beneficial for applications such as medical imaging and product inspection. The inorganic lead halide perovskite CsPbBr possesses relatively larger density and a higher atomic number in contrast to its hybrid counterpart. Therefore, it is expected to provide high detection sensitivity for X-rays; however, it has rarely been studied as a direct X-ray detector.
View Article and Find Full Text PDFThe practical application of optoelectronic artificial synapses in neuromorphic visual systems is still hindered by their limited functionality, reliability and the challenge of mass production. Here, an electro-photo-sensitive synapse based on a highly reliable amorphous InGaZnO thin-film transistor is demonstrated. Not only does the synapse respond to electrical voltage spikes due to charge trapping/detrapping, but also the weight is modified directly by persistent photocurrent effects under UV-light stimulation.
View Article and Find Full Text PDFTwo-dimensional (2D) materials with negative Poisson's ratio (NPR) attract considerable attention because of their exotic mechanical properties. We propose a new 2D material, monolayer GaPS, which shows NPR for both in-plane (-0.033) and out-of-plane (-0.
View Article and Find Full Text PDFBy exploiting novel transport phenomena such as ion selectivity at the nanoscale, it has been shown that nanochannel systems can exhibit electrically controllable conductance, suggesting their potential use in neuromorphic devices. However, several critical features of biological synapses, particularly their conductance modulation, which is both memorable and gradual, have rarely been reported in these types of systems due to the fast flow property of typical inorganic electrolytes. In this work, we demonstrate that electrically manipulating the nanochannel conductance can result in nonvolatile conductance tuning capable of mimicking the analog behavior of synapses by introducing a room-temperature ionic liquid (IL) and a KCl solution into the two ends of a nanochannel system.
View Article and Find Full Text PDFX-ray detectors are broadly utilized in medical imaging and product inspection. Halide perovskites recently demonstrate excellent performance for direct X-ray detection. However, ionic migration causes large noise and baseline drift, limiting the detection and imaging performance.
View Article and Find Full Text PDFTwo-dimensional materials with high carrier mobility and tunable magnetism are in high demand for nanoelectronic and spintronic applications. Herein, we predict a novel two-dimensional monolayer KTlO that possesses an indirect band gap of 2.25 eV (based on HSE06 calculations) and high carrier mobility (450 cm2 V-1 s-1 for electrons and 160 cm2 V-1 s-1 for holes) by means of ab initio calculations.
View Article and Find Full Text PDFWe studied the pseudo-homeothermic synaptic behaviors by integrating complimentary metal-oxide-semiconductor-compatible materials (hafnium oxide, aluminum oxide, and silicon substrate). A wide range of temperatures, from 25 °C up to 145 °C, in neuronal dynamics was achieved owing to the homeothermic properties and the possibility of spike-induced synaptic behaviors was demonstrated, both presenting critical milestones for the use of emerging memristor-type neuromorphic computing systems in the near future. Biological synaptic behaviors, such as long-term potentiation, long-term depression, and spike-timing-dependent plasticity, are developed systematically, and comprehensive neural network analysis is used for temperature changes and to conform spike-induced neuronal dynamics, providing a new research regime of neurocomputing for potentially harsh environments to overcome the self-heating issue in neuromorphic chips.
View Article and Find Full Text PDFOwing to the capability of integrating the information storage and computing in the same physical location, in-memory computing with memristors has become a research hotspot as a promising route for non von Neumann architecture. However, it is still a challenge to develop high performance devices as well as optimized logic methodologies to realize energy-efficient computing. Herein, filamentary Cu/GeTe/TiN memristor is reported to show satisfactory properties with nanosecond switching speed (<60 ns), low voltage operation (<2 V), high endurance (>10 cycles) and good retention (>10 s @85 °C).
View Article and Find Full Text PDFThe tunable disorder of vacancies upon annealing is an important character of crystalline phase-change material GeSbTe (GST). A variety of resistance states caused by different degrees of disorder can lead to the development of multilevel memory devices, which could bring a revolution to the memory industry by significantly increasing the storage density and inspiring the neuromorphic computing. This work focuses on the study of disorder-induced carrier localization which could result in multiple resistance levels of crystalline GST.
View Article and Find Full Text PDFThe Gibbs free energy released during the mixing of river and sea water has been illustrated as a promising source of clean and renewable energy. Reverse electrodialysis (RED) is one major strategy to gain electrical power from this natural salinity, and recently by utilizing nanochannels a novel mode of this approach has shown improved power density and energy converting efficiency. In this work, we carry out an electrokinetic analysis of the work extracted from RED in the nanochannels.
View Article and Find Full Text PDFThe ion selectivity of nanopores due to the wall surface charges is capable of inducing strong coupling between fluidic and ionic motion within the system. This interaction opens up the prospect of operating nanopores as nanoscale devices for electrokinetic energy conversion. However, the very short channel lengths make the ionic movement and fluidics inside the pore to be substantially affected by the ion depletion/accumulation around the pore ends.
View Article and Find Full Text PDFResistive random access memory (RRAM) based reconfigurable logic provides a temporal programmable dimension to realize Boolean logic functions and is regarded as a promising route to build non-von Neumann computing architecture. In this work, a reconfigurable operation method is proposed to perform nonvolatile sequential logic in a HfO-based RRAM array. Eight kinds of Boolean logic functions can be implemented within the same hardware fabrics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2016
Nonvolatile stateful logic computing in memristors is a promising paradigm with which to realize the unity of information storage and processing in the same physical location that has shown great feasibility for breaking the von Neumann bottleneck in traditional computing architecture. How to reduce the computational complexity of memristor-based logic functions is a matter of concern. Here, based on a general logic expression, we proposed a method to implement the arbitrary logic of complete 16 Boolean logic in two steps with one memristor in the crossbar architecture.
View Article and Find Full Text PDFA reflective-type display device based on phase change materials is attractive because of its ultrafast response time and high resolution compared with a conventional display device. This paper proposes and demonstrates a unique display device in which multicolour changing can be achieved on a single device by the selective crystallization of double layer phase change materials. The optical contrast is optimized by the availability of a variety of film thicknesses of two phase change layers.
View Article and Find Full Text PDFTo implement the complex brain functions of learning, forgetting and memory in a single electronic device is very advantageous for realizing artificial intelligence. As a proof of concept, memristive devices with a simple structure of Ni/Nb-SrTiO/Ti were investigated in this work. The functions of learning, forgetting and memory were successfully mimicked using the memristive devices, and the "time-saving" effect of implicit memory was also demonstrated.
View Article and Find Full Text PDFRecent experiments showed that by fabricating nanofluidic channels with hydrophobic materials, the measured amplitudes of both electroosmotic flow (EOF) and ionic current deviated significantly from the conventional electrokinetic modeling indication. Among these unexpected observations, the complicated dependence of EOF on the surface charge concentration of the channel wall remains most confusing. In this work we give a complete and unified picture for the phenomena by outlining the competing two mechanisms in the water-depletion layer around the channel wall: the decreasing trend of fluidic flow due to the redistribution of net charges, and the increasing trend because of the reduced solution viscosity there.
View Article and Find Full Text PDFCurrently, the most widely used photoresists in optical lithography are organic-based resists. The major limitations of such resists include the photon accumulation severely affects the quality of photolithography patterns and the size of the pattern is constrained by the diffraction limit. Phase-change lithography, which uses semiconductor-based resists such as chalcogenide Ge₂Sb₂Te₅ films, was developed to overcome these limitations.
View Article and Find Full Text PDFA new method of multispeed rewritable optical recording is presented. An initialization-free phase-change optical disk is proposed as a candidate for multispeed rewritable optical recording. The simulated results of the initialization-free disk at different linear velocities show that the cooling rate increases from approximately 18.
View Article and Find Full Text PDF