We report the rational synthesis of dopant-free GaN/AlN/AlGaN radial nanowire heterostructures and their implementation as high electron mobility transistors (HEMTs). The radial nanowire heterostructures were prepared by sequential shell growth immediately following nanowire elongation using metal-organic chemical vapor deposition (MOCVD). Transmission electron microscopy (TEM) studies reveal that the GaN/AlN/AlGaN radial nanowire heterostructures are dislocation-free single crystals.
View Article and Find Full Text PDFSemiconducting carbon nanotubes and nanowires are potential alternatives to planar metal-oxide-semiconductor field-effect transistors (MOSFETs) owing, for example, to their unique electronic structure and reduced carrier scattering caused by one-dimensional quantum confinement effects. Studies have demonstrated long carrier mean free paths at room temperature in both carbon nanotubes and Ge/Si core/shell nanowires. In the case of carbon nanotube FETs, devices have been fabricated that work close to the ballistic limit.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2005
Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure.
View Article and Find Full Text PDFWe used vapor-liquid-solid (VLS) methods to synthesize discrete single-element semiconductor nanowires and multicomposition nanowire heterostructures, and then characterized their structure and composition using high-resolution electron microscopy (HRTEM) and analytical electron microscopy techniques. Imaging nanowires requires the modification of the established HRTEM imaging procedures for bulk material to take into consideration the effects of finite nanowire width and thickness. We show that high-resolution atomic structure images of nanowires less than 6 nm in thickness have lattice "streaking" due to the finite crystal lattice in two dimensions of the nanowire structure.
View Article and Find Full Text PDFSubstantial effort has been placed on developing semiconducting carbon nanotubes and nanowires as building blocks for electronic devices--such as field-effect transistors--that could replace conventional silicon transistors in hybrid electronics or lead to stand-alone nanosystems. Attaching electric contacts to individual devices is a first step towards integration, and this step has been addressed using lithographically defined metal electrodes. Yet, these metal contacts define a size scale that is much larger than the nanometre-scale building blocks, thus limiting many potential advantages.
View Article and Find Full Text PDF