Publications by authors named "Xianfu Huang"

Thin films are widely-used functional materials that have attracted much interest in academic and industrial applications. With thin films becoming micro/nanoscale, developing a simple and nondestructive peeling method for transferring and reusing the films remains a major challenge. Here, we develop an electro-capillary peeling strategy that achieves thin film detachment by driving liquid to percolate and spread into the bonding layer under electric fields, immensely reducing the deformation and strain of the film compared with traditional methods (reaching 86%).

View Article and Find Full Text PDF

Viscous fingering is an extensively observed phenomenon in porous media or Hele-Shaw cells. In general, this instability is particularly difficult to control for given fluids and geometries. Therefore, investigating a control method of viscous fingering is quite attractive.

View Article and Find Full Text PDF

Morphologies of evaporative deposition, which has been widely applied in potential fields, were induced by the competition between internal flows inside evaporating droplets. Controlling the pattern of deposition and suppressing the coffee-ring effect are essential issues of intense interest in the aspects of industrial technologies and scientific applications. Here, evaporative deposition of surfactant-laden nanofluid droplets over silicon was experimentally investigated.

View Article and Find Full Text PDF

STEM nano-moiré can achieve high-precision deformation measurement in a large field of view. In scanning moiré fringe technology, the scanning line and magnification of the existing transmission electron microscope (TEM) cannot be changed continuously. The frequency of the crystal lattice is often difficult to match with the fixed frequency of the scanning line, resulting in mostly too dense fringes that cannot be directly observed; thus, the calculation error is relatively large.

View Article and Find Full Text PDF

Kerogens are extracted from deep shales to study pyrolysis of deep shale samples. The 2D molecular models of kerogens are obtained by a series of physical and chemical experiments by which the macromolecular models of kerogens are constructed. Then, the reasonable 3D macromolecular models are established by molecular mechanics and global energy minimization.

View Article and Find Full Text PDF

Many of the nature and life systems are driven by capillary interactions on solid/liquid/gas interfaces. Here, we present a profilometry technique called transmission phase shift for visualizing the liquid/gas interfaces in three dimensions with high resolution. Using this approach, we probe the change in tiny forces with particle radius at a solid/liquid/gas interface.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

Evaporation of water and ethanol/water droplets containing large polystyrene (PS) microparticles on polydimethylsiloxane (PDMS) surface was experimentally investigated. It is found that no matter with or without small addition of ethanol, a compact monolayer deposition is formed for lower microparticle concentration while mountain-like deposition for higher concentration. Since the more volatile compound (ethanol) evaporates more quickly than the less volatile compound (water), evaporation of ethanol/water mixture droplet exhibits different characteristics from pure water.

View Article and Find Full Text PDF

Quantitatively measuring a dynamic liquid surface often presents a challenge due to high transparency, fluidity and specular reflection. Here, a novel Transmission-Lattice based Geometric Phase Analysis (TLGPA) method is introduced. In this method, a special lattice is placed underneath a liquid to be tested and, when viewed from above, the phase of the transmission-lattice image is modulated by the deformation of the liquid surface.

View Article and Find Full Text PDF