Certain immune-checkpoint inhibitors have a narrow therapeutic window (TW) as cancer therapeutics, and engineered dual-/multi-targeting agents could potentially widen the TW to bring true clinical benefits. We report a new rationally-designed bispecific-antibody (BsAb), HX009, simultaneously targeting PD1 and CD47 to improve both the efficacy and safety over the respective single-targeting agents by grafting the extracellular domain of SIRPα onto the parental anti-PD1-monoclonal antibody, HX008. This resulted in an IgG4-based "2 × 2" symmetric structure but with an intentionally-reduced CD47-binding affinity, suggesting a novel candidate cancer immunotherapy.
View Article and Find Full Text PDFBackground: The cylindromatosis (CYLD) tumor suppressor is a microtubule-associated deubiquitinase that plays a critical role in the regulation of cell signaling and contributes to a variety of physiological and pathological processes. However, the functions of CYLD in zebrafish are less well known, particularly with regard to their development and physiology. In this context, we investigated the loss of function of CYLD in zebrafish via transcription activator-like effector nuclease (TALEN)-based gene deletion.
View Article and Find Full Text PDFMicrotubule-binding proteins provide an alternative and vital pathway to the functional diversity of microtubules. Considerable work is still required to understand the complexities of microtubule-associated cellular processes and to identify novel microtubule-binding proteins. In this study, we identify Bcl2-associated athanogene cochaperone 6 (BAG6) as a novel microtubule-binding protein and reveal that it is crucial for primary ciliogenesis.
View Article and Find Full Text PDFThis study investigated the effect of muscle-derived stem cells (MDSCs) and adipose tissue-derived stem cells (ADSCs) in the treatment of stress urinary incontinence (SUI) and their differences in a rat model. MDSCs and ADSC were isolated from rats (n = 10), examined for their properties, and labeled with enhanced green fluorescent protein (EGFP) and β-galactosidase (β-gal) gene. Rats received bladder-neck and transurethral sphincter injection of EGFP-labeled MDSCs and β-gal gene-labeled ADSC and injection of D-Hanks as a control (n = 24 each group).
View Article and Find Full Text PDFMicrotubule-binding proteins (MBPs) are structurally and functionally diverse regulators of microtubule-mediated cellular processes. Alteration of MBPs has been implicated in the pathogenesis of human diseases, including cancer. MBPs can stabilize or destabilize microtubules or move along microtubules to transport various cargoes.
View Article and Find Full Text PDFTubulin is known to undergo unique post-translational modifications (PTMs), such as detyrosination and polyglutamylation, particularly in the unstructured carboxy-terminal tails (CTTs). However, more conventional PTMs of tubulin and their roles in the regulation of microtubule properties and functions remain poorly defined. Here, we report the comprehensive profiling of tubulin phosphorylation, acetylation, ubiquitylation, and O-GlcNAcylation in HeLa cells with a proteomic approach.
View Article and Find Full Text PDFNeuroblastoma is one of the most prevalent pediatric extracranial solid tumors and is often diagnosed after dissemination has occurred. Despite recent advances in multimodal therapies of this malignancy, its therapeutic efficacy remains poor. Novel treatment strategies are thus in great need.
View Article and Find Full Text PDFThe innate immune system is the first line of host defense against infection and involves several different cell types. Here we investigated the role of the phosphatidylinositol 3 kinase (PI3K) signaling pathway in innate immune cells. By blocking this pathway with pharmacological inhibitors, we found that the production of proinflammatory cytokines was drastically suppressed in monocytes and macrophages.
View Article and Find Full Text PDFObjective: Atherosclerosis and other cardiovascular diseases are serious threats to human health and become the leading cause of death in the world. Emerging evidence reveals that inhibition of plaque neovascularization could be an effective approach for the treatment of atherosclerosis. This study was conducted to identify cytoplasmic linker protein 170 as a potential target for cardiovascular diseases through modulation of neovascularization.
View Article and Find Full Text PDF