Decoding neural activity from ventral (speech) motor cortex is known to enable high-performance speech brain-computer interface (BCI) control. It was previously unknown whether this brain area could also enable computer control via neural cursor and click, as is typically associated with dorsal (arm and hand) motor cortex. We recruited a clinical trial participant with ALS and implanted intracortical microelectrode arrays in ventral precentral gyrus (vPCG), which the participant used to operate a speech BCI in a prior study.
View Article and Find Full Text PDFBrain computer interfaces (BCIs) have the potential to restore communication to people who have lost the ability to speak due to neurological disease or injury. BCIs have been used to translate the neural correlates of attempted speech into text. However, text communication fails to capture the nuances of human speech such as prosody, intonation and immediately hearing one's own voice.
View Article and Find Full Text PDFBackground: Brain-computer interfaces can enable communication for people with paralysis by transforming cortical activity associated with attempted speech into text on a computer screen. Communication with brain-computer interfaces has been restricted by extensive training requirements and limited accuracy.
Methods: A 45-year-old man with amyotrophic lateral sclerosis (ALS) with tetraparesis and severe dysarthria underwent surgical implantation of four microelectrode arrays into his left ventral precentral gyrus 5 years after the onset of the illness; these arrays recorded neural activity from 256 intracortical electrodes.
Brain-computer interfaces can enable rapid, intuitive communication for people with paralysis by transforming the cortical activity associated with attempted speech into text on a computer screen. Despite recent advances, communication with brain-computer interfaces has been restricted by extensive training data requirements and inaccurate word output. A man in his 40's with ALS with tetraparesis and severe dysarthria (ALSFRS-R = 23) was enrolled into the BrainGate2 clinical trial.
View Article and Find Full Text PDFArtificial neural networks (ANNs) are state-of-the-art tools for modeling and decoding neural activity, but deploying them in closed-loop experiments with tight timing constraints is challenging due to their limited support in existing real-time frameworks. Researchers need a platform that fully supports high-level languages for running ANNs (e.g.
View Article and Find Full Text PDFArtificial neural networks (ANNs) are state-of-the-art tools for modeling and decoding neural activity, but deploying them in closed-loop experiments with tight timing constraints is challenging due to their limited support in existing real-time frameworks. Researchers need a platform that fully supports high-level languages for running ANNs (e.g.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2022
Soil pH is an essential indicator for assessing soil quality and soil health. In this study, based on the Chinese farmland soil survey dataset and meteorological dataset, the spatial distribution characteristics of soil pH in coastal eastern China were analyzed using kriging interpolation. The relationships between hydrothermal conditions and soil pH were explored using regression analysis with mean annual precipitation (MAP), mean annual temperature (MAT), the ratio of precipitation to temperature (P/T), and the product of precipitation and temperature (P*T) as the main explanatory variables.
View Article and Find Full Text PDFThis Concept examines strategies to design advanced polymers with high CO permeability and high CO /N selectivity, which are the key to the success of membrane technology for CO capture from fossil fuel-fired power plants. Specifically, polymers with enhanced CO solubility and thus CO /N selectivity are designed by incorporating CO -philic groups in polymers such as poly(ethylene oxide)-containing polymers and poly(ionic liquids); polymers with enhanced CO diffusivity and thus CO permeability are designed with contorted rigid polymer chains to obtain high free volume, such as polymers with intrinsic microporosity and thermally rearranged polymers. The underlying rationales for materials design are discussed and polymers with promising CO /N separation properties for CO capture from flue gas are highlighted.
View Article and Find Full Text PDF