Background: The immunogenicity of allogeneic mesenchymal stem cells (MSCs) is significantly enhanced after transplantation or differentiation, and these cells can be recognized and cleared by recipient immune cells. Graft rejection has become a major obstacle to improving the therapeutic effect of allogeneic MSCs or, after their differentiation, transplantation in the treatment of diabetes and other diseases. Solving this problem is helpful for prolonging the time that cells play a role in the recipient body and for significantly improving the clinical therapeutic effect.
View Article and Find Full Text PDFBackground: The immunogenicity of allogeneic mesenchymal stem cells (MSCs) is significantly enhanced after transplantation or differentiation, and these cells can be recognized and cleared by recipient immune cells. Graft rejection has become a major obstacle to improving the therapeutic effect of allogeneic MSCs or, after their differentiation, transplantation in the treatment of diabetes and other diseases. Solving this problem is helpful for prolonging the time that cells play a role in the recipient body and for significantly improving the clinical therapeutic effect.
View Article and Find Full Text PDFFeline chronic gingivostomatitis (FCGS) is an ulcerative and/or proliferative disease that typically affects the palatoglossal folds. Because of its unknown pathogenesis and long disease course, it is difficult to treat and has a high recurrence rate. Most of the bacteria in the oral microbiota exist in the mouth symbiotically and maintain a dynamic balance, and when the balance is disrupted, they may cause disease.
View Article and Find Full Text PDFMesenchymal Stem Cells are ideal seed cells for tissue repair and cell therapy and have promising applications in regenerative medicine and tissue engineering. Using Platelet-Rich Plasma as an adjuvant to create and improve the microenvironment for Mesenchymal Stem Cells growth can enhance the biological properties of Mesenchymal Stem Cells and improve the efficacy of cell therapy. However, the mechanism by which Platelet-Rich Plasma improves the biological performance of Mesenchymal Stem Cells is still unknown.
View Article and Find Full Text PDFDairy cows have high incidence of ketosis during perinatal. According to our previous studies, elevated ketone bodies (mainly β-hydroxybutyrate, BHB) in the peripheral blood are believed to contribute to the impairment of neutrophils mobility and directionality thereby contributing to the immunosuppression and further infectious disease secondary to ketosis. However, the specific effect of BHB on the directionality of bovine neutrophils needs further study and the underlying molecular mechanisms are still unclear.
View Article and Find Full Text PDFPeripartum dairy cows experience negative energy balance, characterized by high concentrations of blood free fatty acids (FFA) and immune dysfunction. Palmitic acid (PA), the most abundant saturated fatty acid in cow blood, is not only an energy precursor, but causes cellular dysfunction when in excess. Neutrophil extracellular traps (NET) are one of the arsenals of weapons neutrophils use to fight invading pathogens.
View Article and Find Full Text PDFKetosis in dairy cows, a common metabolic disorder during the peripartal period, is accompanied by systemic inflammation and high concentrations of blood β-hydroxybutyrate (BHB). Neutrophil apoptosis plays a key role in maintaining the balance of inflammation and functional capacity of circulating neutrophils in ketotic cows. The kinases ERK1/2 and AKT, as well as their downstream Bcl-2 family-mediated mitochondrial signaling, are important apoptosis-regulating pathways in neutrophils.
View Article and Find Full Text PDFKetosis in dairy cows often occurs in the peripartal period and is accompanied by immune dysfunction. High concentrations of β-hydroxybutyrate (BHB) in peripheral blood during ketosis inhibits the release of neutrophil extracellular traps (NET) and contributes to immune dysfunction. However, the mechanisms whereby BHB affects NET release remains unclear.
View Article and Find Full Text PDFSubclinical ketosis (SCK) in dairy cows, a common metabolic disorder during the peripartal period, is accompanied by systemic inflammation. Excessive release of azurophil granule (AG) contents during degranulation of polymorphonuclear neutrophils (PMN) could contribute to systemic inflammation in SCK cows. Although the increase in blood free fatty acids (FFA) in SCK cows may promote AG degranulation from PMN, the underlying mechanisms are unclear.
View Article and Find Full Text PDFKetosis in dairy cows often occurs in the peripartal period and is accompanied by immune dysfunction. High concentrations of β-hydroxybutyrate (BHB) in peripheral blood during ketosis are closely related to the impairment of polymorphonuclear neutrophil (PMN) chemotaxis and contribute to immune dysfunction. The specific effect of BHB on PMN chemotaxis in dairy cows and the underlying molecular mechanisms are unclear.
View Article and Find Full Text PDFThe supply sources of a water resource in arid area can be determined through analysis of the hydrochemical and stable isotopic characteristics of runoff in an alpine glacier river basin. Using mathematical statistical analyses, Piper diagrams, and Gibbs diagrams, this study analyzed the spatiotemporal variations of the hydrochemistry and the stable hydrogen and oxygen isotopes of the Kashi River in Ili (Xinjiang, China) to investigate their characteristics and environmental importance. Runoff samples were collected in the mountainous area of the Kashi River from December 2017 to November 2018.
View Article and Find Full Text PDFKetosis is a common metabolic disorder in high-producing dairy cows during the peripartal period. Negative energy balance leads to increased circulating levels of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB), consequently increasing the risk of ketosis. It is well-known that NEFA and BHB can induce lipotoxicity and oxidative stress in bovine tissues/organs including the liver and adipose tissue.
View Article and Find Full Text PDFThe aim of this study was to investigate the effects of Clostridium butyricum (C. butyricum) on the performance, serum lipid metabolism, muscle morphology, meat quality, and fatty acid profiles of Peking ducks. A total of 1,500 Peking ducks were randomly divided into five groups with five replicates and were fed a non-antibiotic basal diet (Control) or a basal diet supplemented with either 200, 400, or 600 mg/kg of C.
View Article and Find Full Text PDF