Ring resonator (RR) devices are closed-loop waveguides where waves circulate only at the resonant frequencies. They have been used in sensor technology and optical tweezers, but controlling micron-scale particles with optical RR tweezers is challenging due to insufficient force, short working distances, and photodamage. To overcome these obstacles, an acoustofluidic RR-based tweezing method is developed to manipulate micro-sized particles that can enhance particle trapping through the resonance interaction of acoustic waves with high factor (>3000), more than 20 times greater than traditional acoustic transducers.
View Article and Find Full Text PDFAcoustic manipulation has emerged as a valuable tool for precision controls and dynamic programming of cells and particles. However, conventional acoustic manipulation approaches lack the finesse necessary to form intricate, configurable, continuous, and 3D patterning of particles. Here, this study reports acoustography by Beam Engineering and Acoustic Control Node (BEACON), which delivers intricate, configurable patterns by guiding particles along custom paths with independent phase modulation.
View Article and Find Full Text PDFDroplet microfluidics has emerged as a valuable technology for a multitude of chemical and biomedical applications, offering the capability to create independent microenvironments for high-throughput assays. Central to numerous droplet microfluidic applications is the picoinjection of materials into individual droplets, yet existing picoinjection methods often exhibit high power requirements, lack biocompatibility, and/or suffer from limited controllability. Here, we present an acoustofluidic picoinjector that generates acoustic pressure at the droplet interface to enable on-demand, energy-efficient, and biocompatible injection at high precision.
View Article and Find Full Text PDFTherapeutic apheresis aims to selectively remove pathogenic substances, such as antibodies that trigger various symptoms and diseases. Unfortunately, current apheresis devices cannot handle small blood volumes in infants or small animals, hindering the testing of animal model advancements. This limitation restricts our ability to provide treatment options for particularly susceptible infants and children with limited therapeutic alternatives.
View Article and Find Full Text PDFSolids built out of active components have exhibited odd elastic stiffness tensors whose active moduli appear in the antisymmetric part and which give rise to non-Hermitian static and dynamic phenomena. Here, we present a class of active metamaterial featured with an odd mass density tensor whose asymmetric part arises from active and nonconservative forces. The odd mass density is realized using metamaterials with inner resonators connected by asymmetric and programmable feed-forward control on acceleration and active forces along the two perpendicular directions.
View Article and Find Full Text PDFLiquid metal-elastomer composite is a promising soft conductor for skin-interfaced bioelectronics, soft robots, and others due to its large stretchability, ultrasoftness, high electrical conductivity, and mechanical-electrical decoupling. However, it often suffers from deformation-induced leakage, which can smear skin, deteriorate device performance, and cause circuit shorting. Besides, antimicrobial property is desirable in soft conductors to minimize microbial infections.
View Article and Find Full Text PDFResearch on breaking time-reversal symmetry to realize one-way wave propagation is a growing area in photonic and phononic crystals and metamaterials. In this Letter, we present physical realization of an acoustic waveguide with spatiotemporally modulated boundary conditions to realize nonreciprocal transport and acoustic topological pumping. The modulated waveguide inspired by a water wheel consists of a helical tube rotating around a slotted tube at a controllable speed.
View Article and Find Full Text PDFAn elastic cloak is a coating material that can be applied to an arbitrary inclusion to make it indistinguishable from the background medium. Cloaking against elastic disturbances, in particular, has been demonstrated using several designs and gauges. None, however, tolerate the coexistence of normal and shear stresses due to a shortage of physical realization of transformation-invariant elastic materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
We reported a soft-stiff hybridized polymeric film that can self-morph to dedicated three-dimensional (3D) structures for application in acoustic metamaterials. The hybridized film was fabricated by laterally adhering a soft and responsive poly(-isopropylacrylamide) (PNIPAM) hydrogel to stiff and passive SU-8 patterns. Upon thermal stimulation, deformation of the tough PNIPAM hydrogel was locally constrained by the stiff SU-8 patterns, thereby causing laterally nonuniform strain to their interfaces for mechanically buckling the hybridized films to 3D structures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2020
Herein, we demonstrate reprogrammable 3D structures that are assembled from elastic composite sheets made from elastic materials and phase change microparticles. By controlling the phase change of the microparticles by localized thermal patterning, anisotropic residual strain is generated in the pre-stretched composite sheets and then triggers 3D structure assembly when the composite sheets are released from the external stress. Modulation of the geometries and location of the thermal patterns leads to complex 2D-3D shaping behaviors such as bending, folding, buckling, and wrinkling.
View Article and Find Full Text PDFSubdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors.
View Article and Find Full Text PDFA holey-structured metamaterial is proposed for near-field acoustic imaging beyond the diffraction limit. The structured lens consists of a rigid slab perforated with an array of cylindrical holes with periodically modulated diameters. Based on the effective medium approach, the structured lens is characterized by multilayered metamaterials with anisotropic dynamic mass, and an analytic model is proposed to evaluate the transmission properties of incident evanescent waves.
View Article and Find Full Text PDF