Publications by authors named "Xianbo Xiang"

Article Synopsis
  • Accurate prediction of Remaining Useful Life (RUL) is essential for maintenance in industrial systems, but it often requires a lot of failure data which is frequently not available.* -
  • This paper introduces a Bayesian ensemble method that uses a mode-dependent relevance vector machine and trajectory similarity to enhance RUL predictions and address data limitations.* -
  • In tests with bearings and batteries, this method achieved over a 20% reduction in prediction error using only 11 and 16 run-to-failure data points, demonstrating its effectiveness.*
View Article and Find Full Text PDF

Over the past two decades, scholars developed various unmanned sailboat platforms, but most of them have specialized designs and controllers. Whereas these robotic sailboats have good performance with open-source designs, it is actually hard for interested researchers or fans to follow and make their own sailboats with these open-source designs. Thus, in this paper, a generic and flexible unmanned sailboat platform with easy access to the hardware and software architectures is designed and tested.

View Article and Find Full Text PDF

This paper discusses the problem of adaptive trajectory tracking control for remotely operated vehicles (ROVs). Considering thruster dynamics, a third-order state space equation is used to describe the dynamic model of ROVs. For the problem of unknown dynamics and partially known input gain, an adaptive sliding mode control design scheme based on RBF neural networks is developed using a backstepping design technique.

View Article and Find Full Text PDF

This paper addresses the problem of robust bottom following control for a flight-style autonomous underwater vehicle (AUV) subject to system uncertainties, actuator dynamics, and input saturation. First, the actuator dynamics that is approximated by a first-order differential equation is inserted into the AUV dynamics model, which renders a high-order nonlinear dynamics analysis and design in the model-based backstepping controller by utilizing guidance errors. Second, to overcome the shaking control behavior resulted by the model-based high-order derivative calculation, a fuzzy approximator-based model-free controller is proposed, in order to online approximate the unknown part of the ideal backstepping architecture.

View Article and Find Full Text PDF

In this study, a novel decentralized adaptive full-order sliding mode control framework is proposed for the robust synchronized formation motion of multiple unmanned aerial vehicles (UAVs) subject to system uncertainty. First, a full-order sliding mode surface in a decentralized manner is designed to incorporate both the individual position tracking error and the synchronized formation error while the UAV group is engaged in building a certain desired geometric pattern in three dimensional space. Second, a decentralized virtual plant controller is constructed which allows the embedded low-pass filter to attain the chattering free property of the sliding mode controller.

View Article and Find Full Text PDF

The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas.

View Article and Find Full Text PDF

The involvement of OsKASI in FA synthesis is found to play a critical role in root development of rice. The root system plays important roles in plant nutrient and water acquisition. However, mechanisms of root development and molecular regulation in rice are still poorly understood.

View Article and Find Full Text PDF