Publications by authors named "XianFeng Tang"

A slow-wave structure improvement for enhancing the 2π-mode electronic efficiency is embodied in the validation of an extended interaction oscillator (EIO), which has an electronic efficiency of 6.52% at 0.22 THz from particle-in-cell (PIC) calculations.

View Article and Find Full Text PDF
Article Synopsis
  • Heat stress is a major threat to global crop production, and the ways plants respond to it are not fully understood, particularly the role of CCCH proteins in these responses.
  • Research on the CCCH protein C3H15 in Arabidopsis reveals that its repression under heat stress regulates the key heat shock transcription factor HSFA2, which in turn promotes the expression of another protein, HSC70.3, involved in the heat stress response.
  • A regulatory loop involving C3H15, HSFA2, and HSC70.3, along with the E3 ligase MBR2, was identified, indicating that degradation of C3H15 by MBR2 is crucial for managing plant thermotolerance during
View Article and Find Full Text PDF

Introduction: Service robot technology is increasingly gaining prominence in the field of artificial intelligence. However, persistent limitations continue to impede its widespread implementation. In this regard, human motion pose estimation emerges as a crucial challenge necessary for enhancing the perceptual and decision-making capacities of service robots.

View Article and Find Full Text PDF

The homeodomain-leucine zipper (HD-ZIP) transcription factors, representing one of the largest plant-specific superfamilies, play important roles in the response to various abiotic stresses. However, the functional roles of HD-ZIPs in abiotic stress tolerance and the underlying mechanisms remain relatively limited in . In this study, we isolated an HD-ZIP TF gene, , from and ectopically expressed it in Arabidopsis.

View Article and Find Full Text PDF

In this paper, a security enhanced physical layer encryption scheme is proposed for coherent optical polarization division multiplexing (PDM) systems. The concept of a digital optical polarization scrambler (DOPS) is introduced to apply high speed rotation of state of polarization (RSOP) to the transmitted signal, which enables encryption based on polarization perturbations and offers superior flexibility in polarization management. By utilizing different combinations of digital polarization device matrices and adjusting their key parameters, four encryption modes are designed.

View Article and Find Full Text PDF
Article Synopsis
  • * Research indicates that during wood formation, the decay of the gene PdCPD1, influenced by its 3' UTR, is crucial for fine-tuning BR synthesis; overexpressing this gene increases BR levels but inhibits wood growth.
  • * The protein PdGRP1 binds to a specific region in the 3' UTR of PdCPD1, leading to its mRNA breakdown, highlighting a novel mechanism that could aid in genetically optimizing wood biomass in trees.
View Article and Find Full Text PDF
Article Synopsis
  • Large-scale fossil fuel usage has caused severe environmental issues, prompting the need for renewable energy solutions, such as utilizing duckweed for energy due to its rapid growth and high starch content.
  • A new mutant strain of submerged duckweed shows a high starch accumulation with 84.04% of it being amylopectin, showing structural changes that improve its energy potential compared to the wild type.
  • Analysis of the mutant reveals significant metabolic changes, including increased glucose accumulation and shifts in gene expression related to starch production and degradation, suggesting its superior capacity for energy synthesis.
View Article and Find Full Text PDF
Article Synopsis
  • * A comprehensive analysis of metabolites and gene expression revealed 734 identified metabolites, with several key flavonoids accumulating in the 68-red mutant, linked to its distinct coloration.
  • * The study identified 16 up-regulated enzyme genes involved in the flavonoid biosynthetic pathway, highlighting the potential of the 68-red mutant as a valuable resource for the food and medical industries.
View Article and Find Full Text PDF

In this paper, a piecewise sine waveguide (PWSWG) is proposed as the slow-wave structure (SWS) to develop high-power terahertz (THz) traveling wave tubes (TWTs). The PWSWG is an improvement over the rectangular waveguide wherein its two E-planes simultaneously oscillate up and down along the longitudinal direction. The oscillation curve in the H-plane is a piecewise sine curve formed by inserting line segments into the peaks and troughs of the sine curve.

View Article and Find Full Text PDF

Activity of the vascular cambium gives rise to secondary xylem for wood formation in trees. The transcription factor WUSCHEL-related HOMEOBOX4 (WOX4) is a central regulator downstream of the hormone and peptide signaling pathways that maintain cambial activity. However, the genetic regulatory network underlying WOX4-mediated wood formation at the post-transcriptional level remains to be elucidated.

View Article and Find Full Text PDF

Oleaginous microalgae can produce triacylglycerol (TAG) under stress, yet the underlying mechanism remains largely unknown. Here, we show that, in Nannochloropsis oceanica, a bZIP-family regulator NobZIP77 represses the transcription of a type-2 diacylgycerol acyltransferase encoding gene NoDGAT2B under nitrogen-repletion (N+), while nitrogen-depletion (N-) relieves such inhibition and activates NoDGAT2B expression and synthesis of TAG preferably from C16:1. Intriguingly, NobZIP77 is a sensor of blue light (BL), which reduces binding of NobZIP77 to the NoDGAT2B-promoter, unleashes NoDGAT2B and elevates TAG under N-.

View Article and Find Full Text PDF

Wood formation of trees is a complex and costly developmental process, whose regulatory network is involved in the protein-protein and protein-DNA interactions. To detect such interactions in wood development, we developed a high-throughput screening system with 517 Gal4-AD-wood-associated transcription factors (TFs) library from × cv "84K." This system can be used for screening the upstream regulators and interacting proteins of targets by mating-based yeast-one hybrid (Y1H) and yeast-two-hybrid (Y2H) method, respectively.

View Article and Find Full Text PDF

Background And Aims: The precise control of brassinosteroid (BR) homeostasis and signalling is a prerequisite for hypocotyl cell elongation in plants. Arabidopsis MYB42 and its paralogue MYB85 were previously identified to be positive regulators of secondary cell wall formation during mature stages. Here, we aim to reveal the role of MYB42 and MYB85 in hypocotyl elongation during the seedling stage and clarify how MYB42 coordinates BR homeostasis and signalling to regulate this process.

View Article and Find Full Text PDF

Plants have developed sophisticated strategies to coordinate growth and immunity, but our understanding of the underlying mechanism remains limited. In this study, we identified a novel molecular module that regulates plant growth and defense in both compatible and incompatible infections. This module consisted of BZR1, a key transcription factor in brassinosteroid (BR) signaling, and EDS1, an essential positive regulator of plant innate immunity.

View Article and Find Full Text PDF

This study proposes an encryption scheme combining cellular automata (CA) and DNA encoding to improve security of a coherent optical orthogonal frequency division multiplexing (CO-OFDM) system, wherein key sequences are generated with good randomness and unpredictability by a 4-dimensional hyper-chaotic system. A base scrambling pseudo random binary sequence (PRBS) generated by the CA is introduced, which results in better scrambling effect and randomness in the conventional complex DNA encoding. The randomness, complexity and security of the system is enhanced due to 6 variable keys (key space of ∼10).

View Article and Find Full Text PDF

Homogalacturonan (HG), a component of pectin, is synthesized in the Golgi apparatus in its fully methylesterified form. It is then secreted into the apoplast where it is typically de-methylesterified by pectin methylesterases (PME). Secretion and de-esterification are critical for normal pectin function, yet the underlying transcriptional regulation mechanisms remain largely unknown.

View Article and Find Full Text PDF

Brassinosteroid (BR) signaling has long been reported to have an effect on xylem development, but the detailed mechanism remains unclear, especially in tree species. In this study, we find PdC3H17, which was demonstrated to mediate xylem formation driven by auxin in our previous report, is also involved in BR-promoted xylem development. Y1H analysis, EMSA, and transcription activation assay confirmed that was directly targeted by PdBES1, which is a key transcriptional regulator in BR signaling.

View Article and Find Full Text PDF

In nonlinear multisensor system, abrupt state changes and unknown variance of measurement noise are very common, which challenges the majority of the previously developed models for precisely known multisensor fusion techniques. In terms of this issue, an adaptive cubature information filter (CIF) is proposed by embedding strong tracking filter (STF) and variational Bayesian (VB) method, and it is extended to multi-sensor fusion under the decentralized fusion framework with feedback. Specifically, the new algorithms use an equivalent description of STF, which avoid the problem of solving Jacobian matrix during determining strong trace fading factor and solve the interdependent problem of combination of STF and VB.

View Article and Find Full Text PDF

A simple expression of the transverse spatial spin splitting of light-carrying intrinsic orbital angular momentum (IOAM) is theoretically derived for reflections at strong absorbing media surfaces. By introducing an asymmetric spin splitting (ASS) factor, the transverse spatial symmetric spin splitting (SSS) and ASS of an arbitrary polarized vortex beam can be distinguished. Here, the transverse spatial SSS of an elliptically polarized vortex beam with a phase difference of 90° is predicted when the incident angle is close to the pseudo-Brewster angle.

View Article and Find Full Text PDF

A micro-fiber Mach-Zehnder interferometer (MZI), with a thousands-µm-long ring-core fiber (RCF), is demonstrated, and its performance investigation is also implemented. In this paper, the proposed MZI is manufactured by ends-splicing the short RCF segment with single-mode fiber (SMF-28), respectively. The scheme of the MZI is a typically core-mismatch structure, which has the advantages of miniaturization and simplification.

View Article and Find Full Text PDF

Wood (secondary xylem) formation in tree species is dependent on auxin-mediated vascular cambium activity in stems. However, the complex regulatory networks underlying xylem formation remain elusive. Xylem development in Populus was characterized based on microscopic observations of stem sections in transgenic plants.

View Article and Find Full Text PDF

Polarization demultiplexing is generally carried out by a multiple-input multiple-output (MIMO) based algorithm in polarization division multiplexing (PDM) coherent systems. However, in some extreme environments, the MIMO algorithm becomes inapplicable due to the ultra-fast rotation of the state of polarization (RSOP) and large polarization mode dispersion (PMD). In addition, the residual chromatic dispersion (RCD) is always present because of the mismatch of the compensated chromatic dispersion and real value induced in the optical fiber channel.

View Article and Find Full Text PDF

We propose a joint blind equalization method for chromatic dispersion (CD) and ultra-fast rotation of state-of-polarization (RSOP) in a Stokes vector direct detection (SV-DD) system based on a new time-frequency domain Kalman filter structure. In an SV-DD system, the impairments induced by CD and RSOP possess a nonlinear form. Therefore, CD and RSOP cannot be treated sequentially, which causes difficulty in jointly equalizing these two impairments using an ordinary algorithm.

View Article and Find Full Text PDF

The fast growth, ease of metabolic labelling and potential for feedstock and biofuels production make duckweeds not only an attractive model system for understanding plant biology, but also a potential future crop. However, current duckweed research is constrained by the lack of efficient genetic manipulation tools. Here, we report a case study on genome editing in a duckweed species, Lemna aequinoctialis, using a fast and efficient transformation and CRISPR/Cas9 tool.

View Article and Find Full Text PDF