Publications by authors named "Xian-qing Mao"

Liu-Shen-Wan (LSW), an ancient preparation used to treat localized infection with pain, was recently reported to possess anticancer activity. The mechanism responsible for LSW's analgesic and anticancer activity is unclear. In the present study, we obtained a LSW supernatant (LSWS) fraction from ultrasound-assisted ethanol extraction (yield 15.

View Article and Find Full Text PDF

Ubiquitin and the ubiquitination pathway are important regulators of insulin signaling. The insulin receptor substrate‑1 (IRS-1), an ubiquitin-interacting adaptor protein, serves as the key docking protein in insulin signaling. The effects of this dynamic interaction and the changes in ubiquitin expression on hepatic insulin signaling, as well as the relative therapeutic effects of Astragalus polysaccharide (APS) have not yet been elucidated.

View Article and Find Full Text PDF

Aim: To establish the mechanism underlying the improvement of glucose toxicity by Astragalus polysaccharide (APS), which occurred via an AMP activated protein kinase (AMPK)-dependent pathway.

Methods: In vivo and in vitro effects of APS on glucose homeostasis were examined in a type 2 diabetes mellitus (T2DM) rat model. The T2DM rat model was duplicated by a high-fat diet (58% fat, 25.

View Article and Find Full Text PDF

Protein tyrosine phosphatase 1B (PTP1B) was considered as a potential therapeutic target of type 2 diabetes (T2DM) because of its negative regulation of insulin signaling. It located on the cytosolic surface of endoplasmic reticulum (ER) and played an essential role in the ER stress signaling. Activating transcription factor 6 (ATF6) was an ER stress regulated transmembrane transcription factor that activated the transcription of ER molecular chaperones.

View Article and Find Full Text PDF

Our previous studies found that Astragalus polysaccharide (APS) exerts insulin-sensitizing and hypoglycemic activities in type 2 diabetic (T2DM) rats. The present study was designed to further confirm the hypoglycemic effect of APS and to investigate its possible mechanism underlying the improvement of insulin resistance in vivo and in vitro. Diet-induced insulin resistant C57BL/6J mice treated with or without APS (orally, 700 mg/kg/d) for 8 weeks were analyzed and compared.

View Article and Find Full Text PDF

Aim: To examine the potential effects of Astragalus polysaccharide (APS) on hepatic endoplasmic reticulum (ER) stress in vivo and in vitro and its link with hypoglycemia activity, thus establishing the mechanism underlying the hypoglycemic action of APS.

Methods: The obese and type 2 diabetic KKAy mouse model, which is the yellow offspring of the KK mice expressed Ay gene (700 mg/kg-1/d-1, 8 weeks) and a high glucose-induced HepG2 cell model (200 microg/mL, 24 h) were treated with APS. The oral glucose tolerance test was measured to reflex insulin sensitivity with the calculated homeostasis model assessment (HOMA-IR) index.

View Article and Find Full Text PDF