Publications by authors named "Xian-da Yang"

Immune checkpoint blockade (ICB) is an important strategy for cancer treatment and has achieved remarkable clinical results. Further enhancement of the efficacy of ICB therapy with a new technical approach is of potential medical importance. In this study, we constructed a novel nanotherapeutic agent (PDL1-NP-FEXO) for cancer immunotherapy by attaching PD-L1 aptamers to albumin nanoparticles that were loaded with H1-antihitamine fexofenadine (FEXO).

View Article and Find Full Text PDF

Introduction: Immune checkpoint blockade (ICB) is a promising strategy for cancer treatment and has generated remarkable clinical results against multiple malignancies. Exploration of new technical approaches to further boost the therapeutic efficacy of ICB is of potential medical importance. In this study, we designed a novel nanotherapeutics for ICB immunotherapy.

View Article and Find Full Text PDF

The PD-1/PD-L1 pathway blockade can generate a good clinical response by reducing immunosuppression and provoking durable antitumor immunity. In addition to antibodies, aptamers can also block the interaction between PD-1 and PD-L1. For the in vivo application, however, free aptamers are usually too small in size and quickly removed from blood via glomerular filtration.

View Article and Find Full Text PDF

Blocking the PD-1/PD-L1 pathway can diminish immunosuppression and enhance anticancer immunity. PD-1/PD-L1 blockade can be realized by aptamers, which have good biocompatibility and can be synthesized in quantity economically. For in vivo applications, aptamers need to evade renal clearance and nuclease digestion.

View Article and Find Full Text PDF

Purpose: Chemotherapy of colon cancer needs improvement to mitigate the severe adverse effects (AEs) associated with the cytotoxic drugs. The aim of this study is to develop a novel targeted drug delivery system (TDDS) with practical application potential for colon cancer treatment.

Methods: The TDDS was built by loading docetaxel (DTX) in albumin nanoparticles (NPs) that were functionalized with nucleolin-targeted aptamers (AS1411).

View Article and Find Full Text PDF

Purpose: Chemotherapy is the primary treatment for advanced colon cancer, but its efficacy is often limited by severe toxicities. Targeted therapy in the form of selectively drug delivery system (SDDS) is an important strategy to reduce adverse effects. Here, we aim to design a novel SDDS with potential for practical application using biocompatible components and scalable production process, for targeted delivery of doxorubicin (Dox) to colon cancer cells.

View Article and Find Full Text PDF

The standard treatment for most acute myeloid leukemia (AML) is chemotherapy, which is often associated with severe adverse effects. One strategy to reduce the adverse effects is targeted therapy that can selectively deliver anticancer drugs to tumor cells. Immature laminin receptor protein (OFA/iLRP) is a potential target for AML treatment, because it is over-expressed on the surface of AML cells but under-expressed in normal tissue.

View Article and Find Full Text PDF

Background: The 2014-2016 Ebola virus epidemic in West Africa was the largest outbreak of Ebola virus disease (EVD) in history. Clarifying the influence of other prevalent diseases such as human immunodeficiency virus infection and acquired immune deficiency syndrome (HIV/AIDS) will help improve treatment and supportive care of patients with EVD.

Case Presentation: We examined HIV and hepatitis C virus (HCV) antibody prevalence among suspected EVD cases from the Sierra Leone-China Friendship Biological Safety Laboratory during the epidemic in Sierra Leone.

View Article and Find Full Text PDF

A promising strategy in cancer immunotherapy is the employment of a bispecific agent that can bind with both tumor markers and immunocytes for recruitment of lymphocytes to tumor sites and enhancement of anticancer immune reactions. Mucin1 (MUC1) is a tumor marker overexpressed in almost all adenocarcinomas, making it a potentially important therapeutic target. CD16 is expressed in several types of immunocytes, including NK cells, γδ-T cells, monocytes, and macrophages.

View Article and Find Full Text PDF

This study aimed to investigate the serological characteristics of Ebola virus (EBOV) infection during the late phase of the Ebola outbreak in Sierra Leone. In total, 877 blood samples from 694 suspected Ebola virus disease (EVD) cases assessed from March to December 2015, were analyzed via real-time reverse transcription polymerase chain reaction (RT-PCR) for viral RNA and enzyme-linked immunosorbent assay (ELISA) and Luminex to detect antibodies against EBOV. Viral load and EBOV-specific IgM/IgG titers displayed a declining trend during March to December 2015.

View Article and Find Full Text PDF

CD19 is overexpressed in most human B cell malignancies and considered an important tumor marker for diagnosis and treatment. Aptamers are oligonucleotides that may potentially serve as tumor-homing ligand for targeted cancer therapy with excellent affinity and specificity. In this study, we selected a novel CD19 aptamer (LC1) that was a 59-nucleotide single strand DNA.

View Article and Find Full Text PDF

Mucin 1 (MUC1) is an important molecular target for cancer treatment because it is overexpressed in most adenocarcinomas. In this study, a new MUC1-targeted drug delivery system was assembled using an aptamer (Apt) that could recognize MUC1 and a DNA tetrahedron (Td) that could carry doxorubicin (Dox) within its DNA structure. The complex thus formed (Apt-Td) had an average size of 12.

View Article and Find Full Text PDF

Hyperthermia cancer treatment is an adjunctive therapy that aims at killing the tumor cells with excessive heat that is usually generated by metal contrasts exposed to alternating magnetic field. The efficacy of hyperthermia is often limited by the heat damage to normal tissue due to indiscriminate distribution of the metal contrasts within the body. Tumor-targeting metal contrasts may reduce the toxicity of hyperthermia and improve the efficacy of thermotherapy against cancer.

View Article and Find Full Text PDF

Multidrug resistance (MDR) is a major impediment to cancer treatment. A promising strategy for treating MDR is the joint delivery of combined anticancer agents to tumor cells in a single nanocarrier. Here, for the first time, Resveratrol (Res) was co-encapsulated with paclitaxel (PTX) in a PEGylated liposome to construct a carrier-delivered form of combination therapy for drug-resistant tumors.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have been shown to improve the prognosis of EGFR-mutated (exon 19/21) non-small cell lung carcinoma (NSCLC). Positive EGFR mutation status is associated with NSCLC in non-smokers. Genetic and environmental factors have been linked to the etiology of EGFR mutations and sensitivity to EGFR-TKIs in non-smoking NSCLC patients.

View Article and Find Full Text PDF

Malignant glioma has extremely poor prognosis despite combination treatments with surgery, radiation, and chemotherapy. Dendritic cell (DC)-based immunotherapy may potentially serve as an adjuvant treatment of glioma, but its efficacy generally needs further improvement. Here we explored whether graphene oxide (GO) nanosheets could modulate the DC-mediated anti-glioma immune response in vitro, using the T98G human glioma cell line as the study model.

View Article and Find Full Text PDF

Interferon-gamma (IFN-γ) is a glycoprotein generated by lymphocytes that possesses anti-tumor, antiviral and immunomodulatory functions. IFN-γ assays are broadly employed in immunological research and clinical diagnostic tests. Intracellular IFN-γ staining, in particular, is an important immune assay that allows simultaneous determination of cellular phenotype and antigen-specific T cell response.

View Article and Find Full Text PDF

Background: Hepatic arterial infusion chemotherapy for liver metastases is under evaluation because of the high target dose and low general toxicity. To investigate the efficacy and safety of a Folfox4 regimen administered through a combined hepatic arterial and systemic infusion for the first-line treatment of colorectal cancer (CRC) with unresectable liver metastases.

Methods: Twenty-seven CRC patients with unresectable hepatic metastases and no prior chemotherapy were enrolled into the study.

View Article and Find Full Text PDF

Objective: To study the pathogen and characteristics of viral diarrhea in children in Changchun area.

Methods: 460 stools specimens were collected from children with acute diarrhea cured in the childrens, hospital of Changchun in 2010. Rotavirus were detected by ELISA, caliceverus and astrovirus were detected by reverse transcription-polymerase chain reactions (RT-PCR), adenovirus were detected by polymerase chain reactions (PCR).

View Article and Find Full Text PDF

Background: Aptamer-based tumor targeted drug delivery system is a promising approach that may increase the efficacy of chemotherapy and reduce the related toxicity. HER2 protein is an attractive target for tumor-specific drug delivery because of its overexpression in multiple malignancies, including breast, gastric, ovarian, and lung cancers.

Methods: In this paper, we developed a new HER2 aptamer (HB5) by using systematic evolution of ligands by exponential enrichment technology (SELEX) and exploited its role as a targeting ligand for delivering doxorubicin (Dox) to breast cancer cells in vitro.

View Article and Find Full Text PDF

Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by the adverse effects of cytotoxic agents. Targeted drug delivery may reduce the non-specific toxicity of chemotherapy by selectively directing anticancer drugs to tumor cells. MUC1 protein is an attractive target for tumor-specific drug delivery owning to its overexpression in most adenocarcinomas.

View Article and Find Full Text PDF

Endothelial cells have very important functions, one of which is their contribution to regulating molecule and nutrient exchanges between the blood and peripheral tissues. Dysfunction of endothelial cells plays an essential role in the progression of cardiovascular diseases (CVD) such as atherosclerosis and coronary heart disease. With the recent progress of nanotechnology, increasing numbers of studies have focused on the effects of nanoparticles on CVD.

View Article and Find Full Text PDF

MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer.

View Article and Find Full Text PDF