Publications by authors named "Xian-Zhi Li"

Antimicrobial resistance is a global One Health concern with critical implications for the health of humans, animals, and the environment. Phenotypic methods of bacterial culture and antimicrobial susceptibility testing remain the gold standards for the detection of antimicrobial resistance and appropriate patient care; however, genotypic-based methods, such as PCR, whole genome sequencing, and metagenomic sequencing, for detection of genes conferring antimicrobial resistance are increasingly available without inclusion of appropriate standards for quality or interpretation. Misleading test results may lead to inappropriate antimicrobial treatment and, in turn, poor patient outcomes and the potential for increased incidence of antimicrobial resistance.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a critical One Health concern with implications for human, animal, plant, and environmental health. Antimicrobial susceptibility testing (AST), antimicrobial resistance testing (ART), and surveillance practices must be harmonized across One Health sectors to ensure consistent detection and reporting practices. Veterinary diagnostic laboratory stewardship, clinical outcomes studies, and training for current and future generations of veterinarians and laboratorians are necessary to minimize the spread of AMR and move veterinary medicine forward into an age of better antimicrobial use practices.

View Article and Find Full Text PDF
Article Synopsis
  • PD-1/PD-L1 blockade therapy for cancer treatment can lead to significant itchiness, but there has been limited research on how this side effect occurs.
  • This study developed a mouse model to investigate the mechanisms behind itch induced by PD-1/PD-L1 inhibitors, finding that specific treatments like naloxone helped reduce scratching behavior.
  • Additionally, the research highlighted the importance of the PD-1 receptor in the spinal cord and its role in activating microglia, suggesting that targeting this pathway could help manage chronic itch associated with certain skin conditions.
View Article and Find Full Text PDF

The extended-spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-EB) encompass several important human pathogens and are found on the World Health Organization (WHO) priority pathogens list of antibiotic-resistant bacteria. They are a group of organisms which demonstrate resistance to third-generation cephalosporins (3GC) and their presence has been documented worldwide, including in aquaculture and the aquatic environment. This risk profile was developed following the Codex Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance with the objectives of describing the current state of knowledge of ESBL-EB in relation to retail shrimp and salmon available to consumers in Canada, the primary aquacultured species consumed in Canada.

View Article and Find Full Text PDF

Objectives: The progressive impairment of β-cell function results in prolonged deterioration in patients with type 2 diabetes mellitus (T2DM). Interestingly, the finding on pancreatitis secondary to renal injury suggests that potential communication exists between kidney and pancreas. Therefore, we aimed to investigate cell division cycle 42 (Cdc42)-mediated podocyte apoptosis and its effect on insulin secretion in islet β-cells.

View Article and Find Full Text PDF

Resistance to carbapenems in human pathogens is a growing clinical and public health concern. The carbapenems are in an antimicrobial class considered last-resort, they are used to treat human infections caused by multidrug-resistant Enterobacterales, and they are classified by the World Health Organization as 'High Priority Critically Important Antimicrobials'. The presence of carbapenem-resistant Enterobacterales (CREs) of animal-origin is of concern because targeted studies of Canadian retail seafood revealed the presence of carbapenem resistance in a small number of Enterobacterales isolates.

View Article and Find Full Text PDF

Surveillance of antimicrobial use (AMU) and antimicrobial resistance (AMR) is a core component of the 2017 Pan-Canadian Framework for Action. There are existing AMU and AMR surveillance systems in Canada, but some stakeholders are interested in developing their own AMU monitoring/surveillance systems. It was recognized that the establishment of core (minimum) AMU data elements, as is necessary for policy or intervention development, would inform the development of practical and sustainable AMU surveillance capacity across food animal sectors in Canada.

View Article and Find Full Text PDF

Codex published the 'Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance' to standardise the approach for evaluating risk posed by foodborne antimicrobial-resistant bacteria. One of the first steps in the guidelines is to compile a risk profile, which provides the current state of knowledge regarding a food safety issue, describes risk management options and recommends next steps. In Canada, ceftiofur/ceftriaxone-resistant Salmonella enterica subsp.

View Article and Find Full Text PDF

The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity.

View Article and Find Full Text PDF

The clinical failure of antimicrobial drugs that were previously effective in controlling infectious disease is a tragedy of increasing magnitude that gravely affects human health. This resistance by pathogens is often the endpoint of an evolutionary process that began billions of years ago in non-disease-causing microorganisms. This environmental resistome, its mobilization, and the conditions that facilitate its entry into human pathogens are at the heart of the current public health crisis in antibiotic resistance.

View Article and Find Full Text PDF

Antibiotic resistance and associated genes are ubiquitous and ancient, with most genes that encode resistance in human pathogens having originated in bacteria from the natural environment (eg, β-lactamases and fluoroquinolones resistance genes, such as qnr). The rapid evolution and spread of "new" antibiotic resistance genes has been enhanced by modern human activity and its influence on the environmental resistome. This highlights the importance of including the role of the environmental vectors, such as bacterial genetic diversity within soil and water, in resistance risk management.

View Article and Find Full Text PDF

Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded.

View Article and Find Full Text PDF

Of 112 non-repetitive clinical isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex, 80% were resistant to a variety of structurally unrelated antimicrobials although all isolates were susceptible to minocycline and polymyxin. Resistance to carbapenems occurred in 8% of the isolates. The presence of adeSR-adeABC, adeDE and adeIJK drug efflux system genes and class 1 integron genes (integrase gene int1) was assessed by polymerase chain reaction (PCR) in relation to the susceptibility of the isolates to 20 antimicrobials.

View Article and Find Full Text PDF

beta-Lactams are among the most clinically important antimicrobials in both human and veterinary medicine. Bacterial resistance to beta-lactams has been increasingly observed in bacteria, including those of animal origin. The mechanisms of beta-lactam resistance include inaccessibility of the drugs to their target, target alterations and/or inactivation of the drugs by beta-lactamases.

View Article and Find Full Text PDF

Bacterial resistance to quinolones/fluoroquinolones has emerged rapidly and such resistance has traditionally been attributed to the chromosomally mediated mechanisms that alter the quinolone targets (i.e. DNA gyrase and topoisomerase IV) and/or overproduce multidrug resistance efflux pumps.

View Article and Find Full Text PDF

The Mycobacterium smegmatis genome contains many genes encoding putative drug efflux pumps. Yet with the exception of lfrA, it is not clear whether these genes contribute to the intrinsic drug resistance of this organism. We showed first by reverse transcription (RT)-PCR that several of these genes, including lfrA as well as the homologues of Mycobacterium tuberculosis Rv1145, Rv1146, Rv1877, Rv2846c (efpA), and Rv3065 (mmr and emrE), were expressed at detectable levels in the strain mc(2)155.

View Article and Find Full Text PDF

The membrane fusion protein (MFP) component, MexA, of the MexAB-OprM multidrug efflux system of P. aeruginosa is proposed to link the inner (MexB) and outer (OprM) membrane components of this pump as a probable oligomer. A cross-linking approach confirmed the in vivo interaction of MexA and MexB, while a LexA-based assay for assessing protein-protein interaction similarly confirmed MexA multimerization.

View Article and Find Full Text PDF

Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.

View Article and Find Full Text PDF

Stenotrophomonas maltophilia is an emerging nosocomial pathogen that displays high-level intrinsic resistance to multiple antibiotics including aminoglycosides. A gene [aac(6')-Iz] encoding an aminoglycoside-modifying enzyme, AAC(6')-Iz acetyltransferase, was recently cloned and sequenced in S. maltophilia, but its importance with respect to aminoglycoside resistance in this organism was not determined.

View Article and Find Full Text PDF

Of the six putative small multidrug resistance (SMR) family proteins of Pseudomonas aeruginosa, a protein encoded by the PA4990 gene (emrE(Pae)) shows the highest identity to the well-characterized EmrE efflux transporter of Escherichia coli. Reverse transcription-PCR confirmed the expression of emrE(Pae) in the wild-type strain of P. aeruginosa.

View Article and Find Full Text PDF

A homologue of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa, smeABC, was cloned from Stenotrophomonas maltophilia by using, as a probe, a PCR product amplified from this organism with primers based on the mexB sequence. The smeABC genes were hyperexpressed in a mutant strain displaying resistance to several antimicrobials, including aminoglycosides, beta-lactams, and fluoroquinolones. Deletions in smeC but not smeB compromised this resistance, suggesting that SmeC contributed to the multidrug resistance of the mutant as part of another, as-yet-unidentified multidrug efflux system.

View Article and Find Full Text PDF