Publications by authors named "Xian-Wu Hua"

Photodynamic therapy (PDT) is a robust cancer treatment modality, and the precise spatiotemporal control of its subcellular action site is crucial for its effectiveness. However, accurate comparison of the efficacy of different organelle-targeted PDT approaches is challenging since it is difficult to find a single system that can achieve separate targeting of different organelles with separable time windows and similar binding amounts. Herein, we conjugated chlorin e6 (Ce6) with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-5000] (ammonium salt) (DSPE-PEG-NH) to afford DSPE-PEG-Ce6, which could migrate from mitochondrion to lysosome and ultimately to endoplasmic reticulum (ER) after cellular internalization.

View Article and Find Full Text PDF

Biological synthetic methods of nanoparticles have shown great advantages, such as environmental friendliness, low cost, mild reaction conditions, and enhanced biocompatibility and stability of products. Bacteria, as one of the most important living organisms, have been utilized as bioreducing nanofactories to biosynthesize many metal nanoparticles or compounds. Here, inspired by the disinfection process of KMnO, we for the first time introduce bacteria as both the template and the reducing agent to construct a novel tumor microenvironment-responsive MnO -based nanoplatform for biomedical applications in various aspects.

View Article and Find Full Text PDF

Biofilm formation can lead to the treatment failure of persistent bacterial infections. Although a variety of antibacterial agents have been developed, the restricted drug penetration and the embedded bacteria's potentiated recalcitrance to these agents synergistically lead to the unsatisfactory anti-biofilm effect. Herein, we report the applications of metal-free quaternized carbon dots (CDs) in imaging and eliminating bacterial biofilms.

View Article and Find Full Text PDF

Red-emitting carbon dots (CDs) have attracted tremendous attention due to their wide applications in areas including imaging, sensing, drug delivery, and cancer therapy. However, it is still highly challenging for red-emitting CDs to simultaneously achieve high quantum yields (QYs), nucleus targeting, and super-resolution fluorescence imaging (especially the stimulated emission depletion (STED) imaging). Here, it is found that the addition of varied metal ions during the hydrothermal treatment of -phenylenediamine (pPDA) leads to the formation of fluorescent CDs with emission wavelengths up to 700 nm.

View Article and Find Full Text PDF

Lysosomal entrapment and liver accumulation are the two main obstacles faced by many anticancer drugs for achieving satisfactory therapeutic outcomes. Here, we develop a facile one-step hydrothermal synthetic route to prepare trace metal (M)-, N-, and O-doped carbon-dominated nanoparticles (termed as MNOCNPs, M = Ni, Pd, or Cu, metal content: <0.1 mol%) with exceptional photothermal properties (e.

View Article and Find Full Text PDF

Nanomaterial-based enzyme mimics (nanozymes) are attracting increasing attention because of their low production cost, high stability against denaturation, and resistance to high concentrations of substrates. Here, carbon nanoparticles doped with a small amount (<5 mol%) of Pt (denoted as PtCNPs) are synthesized via a facile, cost-effective hydrothermal treatment of p-phenylenediamine (PPD) and KPtCl. The obtained PtCNPs possess high aqueous stability, excellent water-dispersibility, and suitable size (∼15 nm).

View Article and Find Full Text PDF

Integration of multiple diagnostic/therapeutic modalities into a single system with ultrasmall size, excellent photothermal/photodynamic properties, high cellular uptake efficiency, nuclear delivery capacity, rapid renal clearance, and good biosafety is highly desirable for cancer theranostics, but still remains challenging. Here, a novel type of multifunctional nanodots (denoted as BCCGH) was synthesized by mixing bovine serum albumin, carbon dots, and metal ions (Cu and Gd), followed by the conjugation with a photosensitizer (HPPH). The nanodots hold great promise for fluorescence/photoacoustic/magnetic resonance/photothermal imaging-guided synergistic photothermal/photodynamic therapy (PDT) because of their appealing properties such as high photothermal conversion efficiency (68.

View Article and Find Full Text PDF

Tumor growth and metastasis are two main causes of cancer-related deaths. Here, we simultaneously investigated the effects of nanoparticles on cancer cell viability and migration using polyethylene glycol (PEG)-modified, platinum-doped (<4 mol %) carbon nanoparticles (denoted as PEG-PtCNPs). The bare PtCNPs were prepared by the facile one-step hydrothermal treatment of p-phenylenediamine and KPtCl in aqueous solution.

View Article and Find Full Text PDF

Nucleolus tracking and nucleus-targeted photodynamic therapy are attracting increasing attention due to the importance of nucleolus and the sensitivity of nucleus to various therapeutic stimuli. Herein, a new class of multifunctional fluorescent carbon quantum dots (or carbon dots, CDs) synthesized via the one-pot hydrothermal reaction of m-phenylenediamine and l-cysteine was reported to effectively target nucleolus. The as-prepared CDs possess superior properties, such as low-cost and facile synthesis, good water dispersibility, various surface groups for further modifications, prominent photostability, excellent compatibility, and rapid/convenient/wash-free staining procedures.

View Article and Find Full Text PDF

Copper-containing nanomaterials have been applied in various fields because of their appealing physical, chemical, and biomedical properties/functions. Herein, for the first time, a facile, room-temperature, and one-pot method of simply mixing copper ions and sulfur-doped carbon dots (CDs) is developed for the synthesis of copper/carbon quantum dot (or CD)-crosslinked nanosheets (CuCD NSs). The thus-obtained CuCD NSs with the size of 20-30 nm had a high photothermal conversion efficiency of 41.

View Article and Find Full Text PDF

We prepare for the first time a novel type of fluorescent carbon quantum dot (or carbon dot, CD) with intrinsic mitochondrial targeting ability by a one-step hydrothermal treatment of chitosan, ethylenediamine and mercaptosuccinic acid. The as-prepared CDs can realize mitochondrial imaging and mitochondria-targeted photodynamic cancer therapy without further modifications of other mitochondriotropic ligands (such as triphenylphosphine, TPP). Currently, many commercial mitochondrial probes suffer from the lack of modifiable groups, poor photostability, short tracking time, high cost and/or complicated staining procedures, which severely limit their applications in live-cell mitochondrial imaging.

View Article and Find Full Text PDF

Microbial viability assessment plays a key role in many areas such as pathogen detection, infectious disease treatment and antimicrobial drug development. Many conventional viability dyes (such as propidium iodide, PI) used for differentiating live/dead microbes suffer from notable cytotoxicity, poor photostability and are of high cost. Thus their applications for accurate microbial viability determination are limited.

View Article and Find Full Text PDF

Because of the distinct surface structures of different cells (mammalian cells, fungi, and bacteria), surface labeling for these cells requires a variety of fluorescent dyes. Besides, fluorescent dyes (especially the commercial ones) for staining Gram-negative bacterial cell walls are still lacking. Herein, a conformation-adjustable glycol chitosan (GC) derivative (GC-PEG cholesterol-FITC) with "all-in-one" property was developed to realize universal imaging for plasma membranes of mammalian cells (via hydrophobic interaction) and cell walls of fungal and bacterial cells (via electrostatic interaction).

View Article and Find Full Text PDF

Efficient cellular uptake of nanoparticles is crucial for modulating the cell behaviors as well as dictating the cell fate. In this work, by using two commercial reagents (the membrane modification reagent "cholesterol-PEG-biotin" and the avidin-modified quantum dots (QDs) "QD-avidin"), we achieved the enhanced plasma membrane enrichment and endocytosis of fluorescent QDs in cancer cells through cell surface engineering. The QD-cell interaction involved two stages: adsorption and internalization.

View Article and Find Full Text PDF

Copper-based nanomaterials have broad applications in electronics, catalysts, solar energy conversion, antibiotics, tissue imaging, and photothermal cancer therapy. However, it is challenging to prepare ultrasmall and ultrastable CuS nanoclusters (NCs) at room temperature. In this article, a simple method to synthesize water-soluble, monodispersed CuS NCs is reported based on the strategy of trapping the reaction intermediate using thiol-terminated, alkyl-containing short-chain poly(ethylene glycol)s (HS-(CH2)11-(OCH2CH2)6-OH, abbreviated as MUH).

View Article and Find Full Text PDF