Publications by authors named "Xian-Ning Li"

In the water environment such as lakes, there is a phenomenon that the sediment and overlying water are polluted at the same time. In this study, A microbial electrochemical system with an embedded active electrode was developed for simultaneous removal of polycyclic aromatic hydrocarbons in sediment and antibiotics in overlying water by in-situ utilization of electrons. In the closed-circuit group, the pyrene concentration in sediment decreased from 9.

View Article and Find Full Text PDF

This study aims to demonstrate that an up-flow microbial fuel cell-coupled constructed wetland (UCW-MFC) can effectively treat synthetic wastewater that contains a high concentration of pharmaceutical and personal care products (PPCPs, 10 mg L level), such as ibuprofen (IBP) and bisphenol A (BPA). A significant decline in chemical oxygen demand (COD) and ammonia nitrogen (NH-N) removal was observed when BPA was added, which indicated that BPA was more toxic to bacteria. The closed circuit operation of UCW-MFC performed better than the open circuit mode for COD and NH-N removal.

View Article and Find Full Text PDF

In this study, microbial fuel cell coupled constructed wetland (CW-MFC) was constructed for azo dye reactive brilliant red X-3B degradation and electricity production. The effects of support matrix and cathode areas on the degradation of X-3B and the electricity production of CW-MFC were investigated in this work to improve the performance of CW-MFC. The highest decolorization efficiency was 92.

View Article and Find Full Text PDF

In this study, a microbial fuel cell (MFC)-biofilm electrode reactor (BER) coupled system was established for degradation of the azo dye Reactive Brilliant Red X-3B. In this system, electrical energy generated by the MFC degrades the azo dye in the BER without the need for an external power supply, and the effluent from the BER was used as the inflow for the MFC, with further degradation. The results indicated that the X-3B removal efficiency was 29.

View Article and Find Full Text PDF

In this study, the soil microbial fuel cells (MFCs) were constructed in the topsoil contaminated with toxic refractory organic pesticide, hexachlorobenzene (HCB). The performance of electricity generation and HCB degradation in the soil-MFCs were investigated. The HCB degradation pathway was analyzed based on the determination of degradation products and intermediates.

View Article and Find Full Text PDF

Microbial fuel cells (MFCs) have got tremendous attention for their capability to enhance the degradation of some recalcitrant pollutants and simultaneous electricity production. A microbial fuel cell coupled constructed wetland (CW-MFC) is a new device to treat the wastewater and produce energy which has more wastewater treatment volume and more easily to maintenance than others MFCs. The studies on the performance of CW-MFCs are necessary.

View Article and Find Full Text PDF

A microbial fuel cell coupled constructed wetland (planted with Ipomoea aquatica) system (planted CW-MFC) was used for azo dye decolorization. Electricity was simultaneously produced during the co-metabolism process of glucose and azo dye. A non-planted and an open-circuit system were established as reference to study the roles of plants and electrodes in azo dye decolorization and electricity production processes, respectively.

View Article and Find Full Text PDF

A new type of ecological floating bed was developed that combined hydrophyte, aquatic animal and biofilm. The dynamic pilot study on purification characteristic and mechanism of the floating bed for eutrophic was carried out. Result shows that the removal efficiencies of TN, TP and COD(Mn), are 53.

View Article and Find Full Text PDF

Study was made on the use of hydroponic bio-filter method (HBFM) for eutrophic surface water. Results show that HBFM can remove 16.8% of TN and 30.

View Article and Find Full Text PDF