The PNPLA3 I148M variant is the major genetic risk factor for all stages of fatty liver disease, but the underlying pathophysiology remains unclear. We studied the effect of this variant on hepatic metabolism in homozygous carriers and non-carriers under multiple physiological conditions with state-of-the-art stable isotope techniques. After an overnight fast, carriers had higher plasma β-hydroxybutyrate concentrations and lower hepatic de novo lipogenesis (DNL) compared to non-carriers.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, in which prognosis is determined by liver fibrosis. A common variant in hydroxysteroid 17-beta dehydrogenase 13 (, rs72613567-A) is associated with a reduced risk of fibrosis in NAFLD, but the underlying mechanism(s) remains unclear. We investigated the effects of this variant in the human liver and in knockdown in mice by using a state-of-the-art metabolomics approach.
View Article and Find Full Text PDFSignificanceMetformin is the most commonly prescribed drug for the treatment of type 2 diabetes mellitus, yet the mechanism by which it lowers plasma glucose concentrations has remained elusive. Most studies to date have attributed metformin's glucose-lowering effects to inhibition of complex I activity. Contrary to this hypothesis, we show that inhibition of complex I activity in vitro and in vivo does not reduce plasma glucose concentrations or inhibit hepatic gluconeogenesis.
View Article and Find Full Text PDFMild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria and may have evolved to protect cells against the production of damaging reactive oxygen species. Therefore, compounds that enhance mitochondrial uncoupling are potentially attractive anti-aging therapies; however, chronic ingestion is associated with a number of unwanted side effects. We have previously developed a controlled-release mitochondrial protonophore (CRMP) that is functionally liver-directed and promotes oxidation of hepatic triglycerides by causing a subtle sustained increase in hepatic mitochondrial inefficiency.
View Article and Find Full Text PDFAlterations in muscle mitochondrial substrate preference have been postulated to play a major role in the pathogenesis of muscle insulin resistance. In order to examine this hypothesis, we assessed the ratio of mitochondrial pyruvate oxidation (V) to rates of mitochondrial citrate synthase flux (V) in muscle. Contrary to this hypothesis, we found that high-fat-diet (HFD)-fed insulin-resistant rats did not manifest altered muscle substrate preference (V/V) in soleus or quadriceps muscles in the fasting state.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2020
Multiple insulin-regulated enzymes participate in hepatic glycogen synthesis, and the rate-controlling step responsible for insulin stimulation of glycogen synthesis is unknown. We demonstrate that glucokinase (GCK)-mediated glucose phosphorylation is the rate-controlling step in insulin-stimulated hepatic glycogen synthesis in vivo, by use of the somatostatin pancreatic clamp technique using [C]glucose with metabolic control analysis (MCA) in three rat models: 1) regular chow (RC)-fed male rats (control), 2) high fat diet (HFD)-fed rats, and 3) RC-fed rats with portal vein glucose delivery at a glucose infusion rate matched to the control. During hyperinsulinemia, hyperglycemia dose-dependently increased hepatic glycogen synthesis.
View Article and Find Full Text PDFWeight loss by ketogenic diet (KD) has gained popularity in management of nonalcoholic fatty liver disease (NAFLD). KD rapidly reverses NAFLD and insulin resistance despite increasing circulating nonesterified fatty acids (NEFA), the main substrate for synthesis of intrahepatic triglycerides (IHTG). To explore the underlying mechanism, we quantified hepatic mitochondrial fluxes and their regulators in humans by using positional isotopomer NMR tracer analysis.
View Article and Find Full Text PDFAlthough it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes, the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation-all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance.
View Article and Find Full Text PDFFragmentation mechanisms of the singly protonated glutathione (-ECG) and its synthetic analogue peptides (ECG and PPECG) have been investigated by liquid chromatography tandem-mass spectrometry and theoretical calculations. In the mass spectra, similar fragmentation patterns were observed for -ECG and ECG, but a completely different one was found in the case of PPECG. The E-C amide bond cleavage is the predominant pathway for the fragmentation of -ECG and ECG, whereas the additional -terminal prolyl residues in PPECG significantly suppress the E-C amide bond cleavage.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is estimated to affect up to one-third of the general population, and new therapies are urgently required. Our laboratory previously developed a controlled-release mitochondrial protonophore (CRMP) that is functionally liver-targeted and promotes oxidation of hepatic triglycerides. Although we previously demonstrated that CRMP safely reverses hypertriglyceridemia, fatty liver, hepatic inflammation, and fibrosis in diet-induced rodent models of obesity, there remains a critical need to assess its safety and efficacy in a model highly relevant to humans.
View Article and Find Full Text PDFObesity is associated with increased incidence and worse prognosis of more than one dozen tumor types; however, the molecular mechanisms for this association remain under debate. We hypothesized that insulin, which is elevated in obesity-driven insulin resistance, would increase tumor glucose oxidation in obesity-associated tumors. To test this hypothesis, we applied and validated a stable isotope method to measure the ratio of pyruvate dehydrogenase flux to citrate synthase flux (VPDH/VCS, i.
View Article and Find Full Text PDFIn the version of this article originally published, the V and V flux data shown in Fig. 6e,f were inadvertently duplicated from Fig. 5j,k.
View Article and Find Full Text PDFMetformin, the universal first-line treatment for type 2 diabetes, exerts its therapeutic glucose-lowering effects by inhibiting hepatic gluconeogenesis. However, the primary molecular mechanism of this biguanide remains unclear, though it has been suggested to act, at least partially, by mitochondrial complex I inhibition. Here we show that clinically relevant concentrations of plasma metformin achieved by acute intravenous, acute intraportal or chronic oral administration in awake normal and diabetic rats inhibit gluconeogenesis from lactate and glycerol but not from pyruvate and alanine, implicating an increased cytosolic redox state in mediating metformin's antihyperglycemic effect.
View Article and Find Full Text PDFObesity is associated with colon cancer pathogenesis, but the underlying mechanism is actively debated. Here, we confirm that diet-induced obesity promotes tumor growth in two murine colon cancer models and show that this effect is reversed by an orally administered controlled-release mitochondrial protonophore (CRMP) that acts as a liver-specific uncoupler of oxidative phosphorylation. This agent lowered circulating insulin, and the reduction of tumor growth was abrogated by an insulin infusion raising plasma insulin to the level of high-fat-fed mice.
View Article and Find Full Text PDFExposure to the toxins methylene cyclopropyl acetic acid (MCPA) and methylene cyclopropyl glycine (MCPG) of unripe ackee and litchi fruit can lead to hypoglycemia and death; however, the molecular mechanisms by which MCPA and MCPG cause hypoglycemia have not been established To determine the mechanisms of action of these toxins, we infused them into conscious rodents and assessed rates of hepatic gluconeogenesis and ketogenesis, hepatic acyl-CoA and hepatic acetyl-CoA content, and hepatocellular energy charge. MCPG suppressed rates of hepatic β-oxidation as reflected by reductions in hepatic ketogenesis, reducing both short- and medium-chain hepatic acyl-CoA concentrations. Hepatic acetyl-CoA content decreased, and hepatic glucose production was inhibited.
View Article and Find Full Text PDFThe originally published version of this Article contained an error in Equation 30, which was inadvertently introduced during the production process. This has now been corrected in the PDF and HTML versions of the Article.
View Article and Find Full Text PDFThe transition from the fed to the fasted state necessitates a shift from carbohydrate to fat metabolism that is thought to be mostly orchestrated by reductions in plasma insulin concentrations. Here, we show in awake rats that insulinopenia per se does not cause this transition but that both hypoleptinemia and insulinopenia are necessary. Furthermore, we show that hypoleptinemia mediates a glucose-fatty acid cycle through activation of the hypothalamic-pituitary-adrenal axis, resulting in increased white adipose tissue (WAT) lipolysis rates and increased hepatic acetyl-coenzyme A (CoA) content, which are essential to maintain gluconeogenesis during starvation.
View Article and Find Full Text PDFCaloric restriction rapidly reverses type 2 diabetes (T2D), but the mechanism(s) of this reversal are poorly understood. Here we show that 3 days of a very-low-calorie diet (VLCD, one-quarter their typical intake) lowered plasma glucose and insulin concentrations in a rat model of T2D without altering body weight. The lower plasma glucose was associated with a 30% reduction in hepatic glucose production resulting from suppression of both gluconeogenesis from pyruvate carboxylase (V), explained by a reduction in hepatic acetyl-CoA content, and net hepatic glycogenolysis.
View Article and Find Full Text PDFHepatic mitochondria play a central role in the regulation of intermediary metabolism and maintenance of normoglycemia, and there is great interest in assessing rates of hepatic mitochondrial citrate synthase flux (V ) and pyruvate carboxylase flux (V ) in vivo. Here, we show that a positional isotopomer NMR tracer analysis (PINTA) method can be used to non-invasively assess rates of V and V fluxes using a combined NMR/gas chromatography-mass spectrometry analysis of plasma following infusion of [3-C]lactate and glucose tracer. PINTA measures V and V fluxes over a wide range of physiological conditions with minimal pyruvate cycling and detects increased hepatic V following treatment with a liver-targeted mitochondrial uncoupler.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D), but whether NAFLD plays a causal role in the pathogenesis of T2D is uncertain. One proposed mechanism linking NAFLD to hepatic insulin resistance involves diacylglycerol-mediated (DAG-mediated) activation of protein kinase C-ε (PKCε) and the consequent inhibition of insulin receptor (INSR) kinase activity. However, the molecular mechanism underlying PKCε inhibition of INSR kinase activity is unknown.
View Article and Find Full Text PDFIn mammals, pyruvate kinase (PK) plays a key role in regulating the balance between glycolysis and gluconeogenesis; however, in vivo regulation of PK flux by gluconeogenic hormones and substrates is poorly understood. To this end, we developed a novel NMR-liquid chromatography/tandem-mass spectrometry (LC-MS/MS) method to directly assess pyruvate cycling relative to mitochondrial pyruvate metabolism (VPyr-Cyc/VMito) in vivo using [3-(13)C]lactate as a tracer. Using this approach, VPyr-Cyc/VMito was only 6% in overnight fasted rats.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is a major factor in the pathogenesis of type 2 diabetes (T2D) and nonalcoholic steatohepatitis (NASH). The mitochondrial protonophore 2,4 dinitrophenol (DNP) has beneficial effects on NAFLD, insulin resistance, and obesity in preclinical models but is too toxic for clinical use. We developed a controlled-release oral formulation of DNP, called CRMP (controlled-release mitochondrial protonophore), that produces mild hepatic mitochondrial uncoupling.
View Article and Find Full Text PDFImpaired insulin-mediated suppression of hepatic glucose production (HGP) plays a major role in the pathogenesis of type 2 diabetes (T2D), yet the molecular mechanism by which this occurs remains unknown. Using a novel in vivo metabolomics approach, we show that the major mechanism by which insulin suppresses HGP is through reductions in hepatic acetyl CoA by suppression of lipolysis in white adipose tissue (WAT) leading to reductions in pyruvate carboxylase flux. This mechanism was confirmed in mice and rats with genetic ablation of insulin signaling and mice lacking adipose triglyceride lipase.
View Article and Find Full Text PDFLeptin treatment reverses hyperglycemia in animal models of poorly controlled type 1 diabetes (T1D), spurring great interest in the possibility of treating patients with this hormone. The antidiabetic effect of leptin has been postulated to occur through suppression of glucagon production, suppression of glucagon responsiveness or both; however, there does not appear to be a direct effect of leptin on the pancreatic alpha cell. Thus, the mechanisms responsible for the antidiabetic effect of leptin remain poorly understood.
View Article and Find Full Text PDFMetformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis.
View Article and Find Full Text PDF