This paper proposes a wavelet neural network (WNN) for SAR image segmentation by combining the wavelet transform and an artificial neural network. The WNN combines the multiscale analysis ability of the wavelet transform and the classification capability of the artificial neural network by setting the wavelet function as the transfer function of the neural network. Several SAR images are segmented by the network whose transfer functions are the Morlet and Mexihat functions, respectively.
View Article and Find Full Text PDFSensors (Basel)
March 2008
A valid unsupervised and multiscale segmentation of synthetic aperture radar(SAR) imagery is proposed by a combination GA-EM of the Expectation Maximization(EM) algorith with the genetic algorithm (GA). The mixture multiscale autoregressive(MMAR) model is introduced to characterize and exploit the scale-to-scale statisticalvariations and statistical variations in the same scale in SAR imagery due to radar speckle,and a segmentation method is given by combining the GA algorithm with the EMalgorithm. This algorithm is capable of selecting the number of components of the modelusing the minimum description length (MDL) criterion.
View Article and Find Full Text PDF