Publications by authors named "Xian Suo"

Xylene separation is crucial but challenging, especially for the preferential separation of the intermediate-size m-xylene from xylene mixtures. Herein, exploiting the differences in molecular length and alkyl distribution among xylenes, we present a length-matched metal-organic framework, formulated as Al(OH)[OC-CHO-CO], featuring an effective pore size corresponding to m-xylene molecular length combined with multiple negative O hydrogen bond donors distribution, can serve as a molecular trap for efficient preferential separation of the intermediate-size m-xylene. Benchmark separation performance was achieved for separating m-xylene from a ternary mixture of m-xylene/o-xylene/p-xylene, with simultaneous record-high m-xylene uptake (1.

View Article and Find Full Text PDF

Porous ionic polymers with unique features have exhibited high performance in various applications. However, the fabrication of functional porous ionic polymers with custom functionality and porosity for efficient removal of low-concentration SO remains challenging. Herein, a novel nitrogen-enriched porous ionic polymer NHPy-PIP is prepared featuring high-content nitrogen sites (15.

View Article and Find Full Text PDF

Selective recognition of 1,3-butadiene from complex olefin isomers is vital for 1,3-butadiene purification, but the lack of porous materials with suitable pore structures results in poor selectivity and low capacity in C4 olefin separation. Herein, two sulfonate-functionalized organic frameworks, ZU-601 and ZU-602, are designed and show impressive separation performance toward C4 olefins. Benefiting from the suitable aperture size caused by the flexibility of coordinated organic ligand, ZU-601, ZU-602 that are pillared with different sulfonate anions could discriminate C4 olefin isomers with high uptake ratio: 1,3-butadiene/1-butene (207), 1,3-butadiene/-2-butene (10.

View Article and Find Full Text PDF

Extensive efforts have been made to improve the separation selectivity of hydrocarbon isomers with nearly distinguishable boiling points; however, how to balance the high regeneration energy consumption remains a daunting challenge. Here we describe the efficient separation of hexane isomers by constructing and exploiting the rotational freedom of organic linkers and inorganic SnF anions within adaptive frameworks, and reveal the nature of flexible host-guest interactions to maximize the gas-framework interactions while achieving potential energy storage. This approach enables the discrimination of hexane isomers according to the degree of branching along with high capacity and record mono-/di-branched selectivity (6.

View Article and Find Full Text PDF

Physisorption relying on crystalline porous materials offers prospective avenues for sustainable separation processes, greenhouse gas capture, and energy storage. However, the lack of end-to-end deep learning model for adsorption prediction confines the rapid and precise screen of crystalline porous materials. Here, we present DeepSorption, a spatial atom interaction learning network that realizes accurate, fast, and direct structure-adsorption prediction with only information of atomic coordinate and chemical element types.

View Article and Find Full Text PDF

Adsorptive separation is an energy-efficient alternative, but its advancement has been hindered by the challenge of industrially potential adsorbents development. Herein, a novel ultra-microporous metal-organic framework ZU-901 is designed that satisfies the basic criteria raised by ethylene/ethane (C H /C H ) pressure swing adsorption (PSA). ZU-901 exhibits an "S" shaped C H curve with high sorbent selection parameter (65) and could be mildly regenerated.

View Article and Find Full Text PDF
Article Synopsis
  • Superbase-derived task-specific ionic liquids (STSILs) are effective in carbon capture through chemisorption, with CO uptake capacity closely tied to the basicity of their anions.
  • High energy costs in desorption and unwanted reactions due to strong anion basicity present ongoing challenges in this area.
  • This study introduces carbanion-derived STSILs that enhance CO chemisorption through a new pathway, revealing that the STSIL with deprotonated malononitrile ([MN]) shows superior CO uptake compared to 2-methylmalononitrile ([MMN]), despite being less basic.
View Article and Find Full Text PDF

Although anionic N and O sites have been widely used in chemisorption of CO, carbanions are much less explored for CO capture. Here we employ calculations and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations to examine the interaction between CO and the malononitrile carbanion, [CH(CN)]. We have explored the potential energy surface of CO binding by scanning the C-C distance between CO and the central C site of the carbanion.

View Article and Find Full Text PDF

Selective paraffin capture from olefin/paraffin mixtures could afford high-purity olefins directly, but suffers from the issues of low separation selectivity and olefin productivity. Herein, we report an ultramicroporous material (PCP-IPA) with parallel-aligned linearly extending isophthalic acid units along the one-dimensional channel, realizing the efficient production of ultra-high purity CH and CH (99.99%).

View Article and Find Full Text PDF

Development of efficient carbon capture-and-release technologies with minimal energy input is a long-term challenge in mitigating CO emissions, especially via CO chemisorption driven by engineered chemical bond construction. Herein, taking advantage of the structural diversity of ionic liquids (ILs) in tuning their physical and chemical properties, precise reaction energy regulation of CO chemisorption was demonstrated deploying metal-ion-amino-based ionic liquids (MAILs) as absorbents. The coordination ability of different metal sites (Cu, Zn, Co, Ni, and Mg) to amines was harnessed to achieve fine-tuning on stability constants of the metal ion-amine complexes, acting as the corresponding cations in the construction of diverse ILs coupled with CO -philic anions.

View Article and Find Full Text PDF

2D π-conjugated networks linked by aza-fused units represent a pivotal category of graphitic materials with stacked nanosheet architectures. Extensive efforts have been directed at their fabrication and application since the discovery of covalent triazine frameworks (CTFs). Besides the triazine cores, tricycloquinazoline and hexaazatriphenylene linkages are further introduced to tailor the structures and properties.

View Article and Find Full Text PDF

Perfluorinated covalent triazine frameworks (F-CTFs) have shown unique features and attractive performance in separation and catalysis. However, state-of-the-art F-CTFs synthesized via the ZnCl -promoted procedure have quite low fluorine contents due to C-F bond cleavage induced by chloride (a Lewis base) and the harsh conditions deployed (400-700 °C). Fabricating F-CTFs with high fluorine contents (>30 wt %) remains challenging.

View Article and Find Full Text PDF

Separating trace propyne from propylene is of great importance in the petrochemical industry but difficult because of very close molecular sizes and physicochemical properties, which promotes the development of high-performance porous materials with great stability in practical adsorptive separation; however, a limited number of efficient adsorbents have been reported. Here, a class of robust functionalized ionic ultramicroporous polymers (IUPs) with different branched structures that feature high-density preferential anionic binding sites and outstanding thermal and water stability is systematically studied for the separation of propyne and propylene for the first time. The functionalized pore environment of IUPs achieves the highest selectivity of propyne and propylene (126.

View Article and Find Full Text PDF

Invited for this month's cover is the group of Sheng Dai at the Oak Ridge National Laboratory. The image shows the CO chemisorption behavior of coordination-derived phenolate sorbents. The Communication itself is available at 10.

View Article and Find Full Text PDF

Strong metal-support interaction (SMSI) construction is a pivotal strategy to afford thermally robust nanocatalysts in industrial catalysis, but thermally induced reactions (>300 °C) in specific gaseous atmospheres are generally required in traditional procedures. In this work, a photochemistry-driven methodology was demonstrated for SMSI construction under ambient conditions. Encapsulation of Pd nanoparticles with a TiO overlayer, the presence of Ti species, and suppression of CO adsorption were achieved upon UV irradiation.

View Article and Find Full Text PDF

CO chemisorption via C-O bond formation is an efficient methodology in carbon capture especially using phenolate-based ionic liquids (ILs) as the sorbents to afford carbonate products. However, most of the current IL systems involve alkylphosphonium cations, leading to side reactions via the ylide intermediate pathway. It is important to figure out the CO chemisorption behavior of phenolate-derived sorbents using inactive and easily accessible cation counterparts without active protons.

View Article and Find Full Text PDF

The current approaches capable of affording conjugated porous networks (CPNs) still rely on solution-based coupling reactions promoted by noble metal complexes or Lewis acids, on-surface polymerization conducted in ultrahigh-vacuum environment at very high temperatures (>200 °C), or mechanochemical Scholl-type reactions limited to electron-rich substrates. To develop simple and scalable approaches capable of making CPNs under neat and ambient conditions, herein, a novel and complementary method to the current oxidative Scholl coupling processes is demonstrated to afford CPNs via direct aromatic ring knitting promoted by mechanochemical Ullmann-type reactions. The key to this strategy lies in the dehalogenation of aromatic halides in the presence of Mg involving the formation of Grignard reagent intermediates.

View Article and Find Full Text PDF

The successful integration or hybridization of perovskite oxides with their halide cousins would enable the formation of both multi-anionic and multi-cationic solid solutions with unique metal-ion sites and synergistic properties that could potentially surpass the performance of classic perovskites. However, such solid solutions had not been produced previously owing to their distinct formation energies and different synthesis conditions. Solid solutions combining perovskite oxides with fluorides were produced in this study by mechanochemical synthesis.

View Article and Find Full Text PDF

Here we demonstrate the deep removal of SO with high uptake capacity (1.55 mmol g ) and record SO /CO selectivity (>5000) at ultra-low pressure of 0.002 bar, using ionic ultramicroporous polymers (IUPs) with high density of basic anions.

View Article and Find Full Text PDF

Strong metal-support interaction (SMSI) is recognized as a pivotal strategy in hetereogeneous catalysis to prevent the sintering of metal nanoparticles (NPs), but issues including restriction of supports to reducible metal oxides, nonporous architecture, sintering by thermal treatment at >800 °C, and unstable nature limit their practical application. Herein, the construction of non-oxide-derived SMSI nanocatalysts based on highly crystalline and nanoporous hexagonal boron nitride (h-BN) 2D materials was demonstrated via in situ encapsulation and reduction using NaBH, NaNH, and noble metal salts as precursors. The as-prepared nanocatalysts exhibited robust thermal stability and sintering resistance to withstand thermal treatment at up to 950 °C, rendering them with high catalytic efficiency and durability in CO oxidation even in the presence of HO and hydrocarbon simulated to realistic exhaust systems.

View Article and Find Full Text PDF

The design of highly stable and efficient porous materials is essential for developing breakthrough hydrocarbon separation methods based on physisorption to replace currently used energy-intensive distillation/absorption technologies. Efforts to develop advanced porous materials such as zeolites, coordination frameworks, and organic polymers have met with limited success. Here, a new class of ionic ultramicroporous polymers (IUPs) with high-density inorganic anions and narrowly distributed ultramicroporosity is reported, which are synthesized by a facile free-radical polymerization using branched and amphiphilic ionic compounds as reactive monomers.

View Article and Find Full Text PDF

Fabrication of crystalline covalent triazine frameworks (CTFs) under mild conditions without introduction of carbonization is a long-term challenging subject. Herein, a tandem transformation strategy was demonstrated for the preparation of highly crystalline CTFs with high surface areas under mild and metal- and solvent-free conditions. CTF-1 with a staggered AB stacking order (orange powder) obtained in the presence of a catalytic amount of superacid at 250 °C was transformed to highly crystalline CTF-1 with an eclipsed AA stacking order (greenish powder) and surface area of 646 m g through annealing at 350 °C under nitrogen.

View Article and Find Full Text PDF

A series of cyclodextrin-derived room temperature macromolecular ionic liquids carrying rather low glass transition temperatures of -20 to -40 °C are synthesized via sequential esterification, quaternization, and anion metathesis reactions. In addition to being ionic in nature, they are viscous liquids at room temperature with more fluidic behavior at elevated temperatures. They serve as a solvent for organic dyes or iodine separation via a liquid-liquid extraction approach.

View Article and Find Full Text PDF