Publications by authors named "Xian Jun Song"

The chromatin modifier GRAIN WEIGHT 6a (GW6a) enhances rice grain size and yield. However, little is known about its gene network determining grain size. Here, we report that MITOGEN-ACTIVED PROTEIN KINASE 6 (OsMAPK6) and E3 ligase CHANG LI GENG 1 (CLG1) interact with and target GW6a for phosphorylation and ubiquitylation, respectively.

View Article and Find Full Text PDF

Histone acetylation affects numerous cellular processes, such as gene transcription, in both plants and animals. However, the posttranslational modification-participated regulatory networks for crop-yield-related traits are largely unexplored. Here, we characterize a regulatory axis for controlling rice grain size and yield, centered on a potent histone acetyltransferase (chromatin modifier) known as HHC4.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates ecological speciation using two wild rice species, Oryza rufipogon and Oryza nivara, focusing on how habitat differences contribute to their phenotypic divergence and genetic structure.
  • - Researchers created a detailed genetic map and identified 113 quantitative trait loci (QTLs) linked to 16 traits, with a mix of major and minor gene effects contributing to the observed differences.
  • - Results suggest that natural selection drives rapid diversification by influencing multiple traits simultaneously, which could inform better breeding strategies for rice.
View Article and Find Full Text PDF

Organ growth is controlled by both intrinsic genetic factors and external environmental signals. However, the molecular mechanisms that coordinate plant organ growth and nutrient supply remain largely unknown. We have previously reported that the B3 domain transcriptional repressor SOD7 (NGAL2) and its closest homologue DPA4 (NGAL3) act redundantly to limit organ and seed growth in Arabidopsis.

View Article and Find Full Text PDF

Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however, to date, few genetically defined pathways have been reported, and whether phosphorylation could boost degradation of Aux/IAA proteins is uncertain. Here, we show that TGW3 (also called OsGSK5) interacts with and phosphorylates OsIAA10.

View Article and Find Full Text PDF

Seed vigor in crops is important in terms of improving grain quality and germplasm conservation; however, little is known about its regulatory mechanisms through the encoded proteome and gene network. Comparative analyses of transcriptome (RNA sequencing [RNA-seq]) and broadly targeted metabolic profiling of two subspecific rice cultivars with distinct seed vigor during accelerated aging revealed various biological pathways and metabolic processes as key influences explaining trait differences. RNA-seq coexpression regulatory network analyses identified several transcription factors, including bZIP23 and bZIP42, that act as nodes in the gene network.

View Article and Find Full Text PDF

For grain crops such as rice (Oryza sativa), grain size substantially affects yield. The histone acetyltransferase GRAIN WEIGHT 6a (GW6a) determines grain size and yield in rice. However, the gene regulatory network underlying GW6a-mediated regulation of grain size has remained elusive.

View Article and Find Full Text PDF

The model of loss and re-establishment of desiccation tolerance (DT) in germinated seeds has been well developed to explore the mechanisms associated with DT, but little attention has been paid to the tissue variation in this model. Herein, we investigated DT in different embryo axis tissues of germinated pea seeds and its re-establishment by poly(ethylene glycol) (PEG) treatment and then employed an iTRAQ-based proteomic method to explore the underlying mechanisms. DT varied among the four embryo axis parts of germinated seeds: epicotyl > hypocotyl-E (hypocotyl part attached to the epicotyl) > hypocotyl-R (hypocotyl part attached to the radicle) > radicle.

View Article and Find Full Text PDF

Two novel QTLs for early seedling growth in rice were fine mapped, with one of which to a 4-kb identical to the known GW6a gene, and another one to a 43-kb region that contains six candidate genes. Leaves are extremely important for plant photosynthesis: the size and shape of which determine the rate of transpiration, carbon fixation and light interception, and their robust growth at seedling stage endow crops with the ability to compete with weeds. So far, many genes for the traits have been cloned with mutants; however, identification of those quantitative trait loci (QTLs) that control early seedling growth has seldom been reported.

View Article and Find Full Text PDF

Three novel QTLs for grain shape were genetically fine mapped, with two of which to a 250-kb target interval on rice chromosome 2 that contains fourteen candidate genes. Grain shape (grain length, width, and thickness) determines crop yield and grain quality. However, the trait is regulated by numerous naturally occurring quantitative trait loci (QTLs) and the underlying mechanism remains largely unknown.

View Article and Find Full Text PDF

To clarify the genetic mechanism underlying grain protein content (GPC) and to improve rice grain qualities, the mapping and cloning of quantitative trait loci (QTLs) controlling the natural variation of GPC are very important. Based on genotyping-by-resequencing, a total of 14 QTLs were detected with the Huanghuazhan/Jizi1560 (HHZ/JZ1560) recombinant inbred line (RIL) population in 2016 and 2017. Seven of the fourteen QTLs were repeatedly identified across two years.

View Article and Find Full Text PDF

Semi-dwarfing genes have contributed to enhanced lodging resistance, resulting in increased crop productivity. In the history of grain sorghum breeding, the spontaneous mutation, dw1 found in Memphis in 1905, was the first widely used semi-dwarfing gene. Here, we report the identification and characterization of Dw1.

View Article and Find Full Text PDF

Grain weight is an important crop yield component; however, its underlying regulatory mechanisms are largely unknown. Here, we identify a grain-weight quantitative trait locus (QTL) encoding a new-type GNAT-like protein that harbors intrinsic histone acetyltransferase activity (OsglHAT1). Our genetic and molecular evidences pinpointed the QTL-OsglHAT1's allelic variations to a 1.

View Article and Find Full Text PDF

Rice (Oryza sativa) is one of the most important food crops in the world. Numerous quantitative trait loci or genes controlling panicle architecture have been identified to increase grain yield. Yet grain yield, defined as the product of the number of well-ripened grains and their weight, is a complex trait that is determined by multiple factors such as source, sink and translocation capacity.

View Article and Find Full Text PDF

Increased crop yields are required to support rapid population growth worldwide. Grain weight is a key component of rice yield, but the underlying molecular mechanisms that control it remain elusive. Here, we report the cloning and characterization of a new quantitative trait locus (QTL) for the control of rice grain length, weight and yield.

View Article and Find Full Text PDF

Identification of alleles that improve crop production and lead to higher-yielding varieties are needed for food security. Here we show that the quantitative trait locus WFP (WEALTHY FARMER'S PANICLE) encodes OsSPL14 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 14, also known as IPA1). Higher expression of OsSPL14 in the reproductive stage promotes panicle branching and higher grain yield in rice.

View Article and Find Full Text PDF

Living organisms must acquire new biological functions to adapt to changing and hostile environments. Deepwater rice has evolved and adapted to flooding by acquiring the ability to significantly elongate its internodes, which have hollow structures and function as snorkels to allow gas exchange with the atmosphere, and thus prevent drowning. Many physiological studies have shown that the phytohormones ethylene, gibberellin and abscisic acid are involved in this response, but the gene(s) responsible for this trait has not been identified.

View Article and Find Full Text PDF

Hydrogen peroxide (H(2)O(2)) is a central modulator of stomatal closure. It remains unknown, however, how the upstream regulation of H(2)O(2) homeostasis operates. In this issue of Genes & Development, Huang and colleagues (pp.

View Article and Find Full Text PDF

Grain weight is one of the most important components of grain yield and is controlled by quantitative trait loci (QTLs) derived from natural variations in crops. However, the molecular roles of QTLs in the regulation of grain weight have not been fully elucidated. Here, we report the cloning and characterization of GW2, a new QTL that controls rice grain width and weight.

View Article and Find Full Text PDF