Conjugated bile acids (CBAs) play major roles in hepatic gene regulation via nuclear S1P-inhibited histone deacetylase (HDACs). Gut microbiota modifies bile acid pool to generate CBAs and then CBAs returned to liver to regulate hepatic genes, fatty liver, and non-alcoholic fatty liver disease (NAFLD). However, it is not yet known how the gut microbiota was modified under the environment of inflammatory bowel disease (IBD).
View Article and Find Full Text PDFAtypical chemokine receptor 3 (ACKR3) has emerged as a key player in various biological processes. Its atypical "intercepting receptor" properties have established ACKR3 as the major regulator in the pathophysiological processes in many diseases. In this study, we investigated the role of ACKR3 activation in promoting colorectal tumorigenesis.
View Article and Find Full Text PDFOur previous studies found that M10, a myricetin-3-O-β-d-lactose sodium salt, possessed higher effects of ameliorating ulcerative colitis (UC) than Myricetin in mice. Here, we aim to investigate whether the inhibition of UC is the consequence of the effects of M10 that leads to the changed microbiota. Mice model of UC was induced by dextran sulfate sodium (DSS) treatment.
View Article and Find Full Text PDFBackground And Purpose: It is well known that microsatellite instability-high (MSI-H) is associated with 5-fluorouracil (5-FU) resistance in colorectal cancer. MSI-H is the phenotype of DNA mismatch repair deficiency (MMR-D), mainly occurring due to hypermethylation of MLH1 promoter CpG island. However, the mechanisms of MMR-D/MSI-H are unclear.
View Article and Find Full Text PDFBackground: M10 is a derivative of Myricetin by adding a hydrophilic glycosylation group. Our previous study revealed that M10 by oral administration prevented colitis-associated colonic cancer (CAC) through attenuating endoplasmic reticulum stress in mice. In current study, we evaluated the inhibitory effects of M10 on ulcerative colitis in mice model, the mechanism of M10 in preventing colitis was further investigated.
View Article and Find Full Text PDFSphingosine-1-phosphate (S1P), the backbone of most sphingolipids, activating S1P receptors (S1PRs) and the downstream G protein signaling has been implicated in chemoresistance. In this study we investigated the role of S1PR2 internalization in 5-fluorouracil (5-FU) resistance in human colorectal cancer (CRC). Clinical data of randomly selected 60 CRC specimens showed the correlation between S1PR2 internalization and increased intracellular uracil (P < 0.
View Article and Find Full Text PDFAberrant sphingolipid metabolism has been implicated in chemoresistance, but the underlying mechanisms are still poorly understood. Herein we revealed a previously unrecognized mechanism of 5-fluorouracil (5-FU) resistance contributed by high SphK2-upregulated dihydropyrimidine dehydrogenase (DPD) in colorectal cancer (CRC), which is evidenced from human CRC specimens, animal models, and cancer cell lines. TMA samples from randomly selected 60 CRC specimens firstly identified the clinical correlation between high SphK2 and increased DPD (p < 0.
View Article and Find Full Text PDFIn this study, S1PR2 was reckoned as a brand-new GPCR target for designing inhibitors to reverse 5-FU resistance. Herein a series of pyrrolidine pyrazoles as the S1PR2 inhibitors were designed, synthesized and evaluated for their activities of anti-FU-resistance. Among them, the most promising compound JTE-013, exhibited excellent inhibition on DPD expression and potent anti-FU-resistance activity in various human cancer cell lines, along with the in vivo HCT116 cells xenograft model, in which the inhibition rate of 5-FU was greatly increased from 13.
View Article and Find Full Text PDFA correction to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe important role of insulin-like growth factor-1 receptor (IGF-1R) in tumorigenesis has been well established. The classical model involves IGF-1R binding to IGF-1/2, the following activation of PI3K-Akt-signaling cascades, driving cell proliferation and apoptosis inhibition. Here we report a new signal transduction pathway of IGF-1R in the intestinal epithelium.
View Article and Find Full Text PDFAlthough insulin-like growth factor-1 receptor (IGF-1R) has been accepted as a major determinant of cancers, its biological roles and corresponding mechanisms in tumorigenesis have remained elusive. Herein, we demonstrate that IGF-1R plays pivotal roles in the regulation of mitochondrial respiratory chain and functions during colitis and tumorigenesis. Heterozygous knockout IGF-1R attenuated azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis and colitis associated cancer (CAC) in Igf1r mice.
View Article and Find Full Text PDFAlthough a mountain of papers have showed that metformin plays a role in inhibiting cancers, but the mechanism underpinning this has not yet fully elucidated. Herein, we used AOM/DSS model, the clinicopathological features are similar to those found in humans, to investigate the effects of metformin as well as combination with 5-FU in the prevention of colitis and colitis associated cancer (CAC). Oral metformin significantly inhibited DSS-induced ulcerative colitis and AOM/DSS-induced CAC.
View Article and Find Full Text PDFBoth chemokine receptors (CXCRs) 7 and 4 can facilitate immune cell migration and mediate a vast array of physiological and pathological events. Herein we report, in both human and animal studies, that these two CXCRs can form heterodimers in vivo and promote colorectal tumorigenesis through histone demethylation. Compared with adjacent non-neoplastic tissue, human colorectal cancer (CRC) tissue showed a significant higher expression of CXCR4 and CXCR7, which was colocalized in the cancer cell epithelium.
View Article and Find Full Text PDFChronic gut inflammation disposes to an increased risk of colitis-associated cancer. Chemoprevention is an attractive complementary strategy. We aimed to evaluate the chemopreventive effects of M10, a novel derivative of Myricetin, in the murine azoxymethane/dextran sodium sulfate model.
View Article and Find Full Text PDFUnlabelled: Naringin, a natural occurring flavonoid compound, enriches in citrus fruits. We aimed to evaluate the inhibitory effect of naringin on colitis and chronic inflammation-driven carcinogenesis. Male C57BL/6 mice were exposed to AOM/DSS to induce colorectal inflammation and carcinogenesis.
View Article and Find Full Text PDFCXCL12 is an extracellular chemokine binding to cell surface receptor CXCR4. We found that activation of CXCL12/CXCR4 axis stimulated angiogenesis in endothelial cells. Knockdown of CXCR4 in endothelial cells prevented the branch points of angiogenesis.
View Article and Find Full Text PDFMyricetin is a flavonoids compound extracted from edible myrica rubra. We aimed to evaluate the efficacy of Myricetin on colonic chronic inflammation and inflammation-driven tumorigenesis in mice. Myricetin was administrated by gavage for 4 consecutive weeks.
View Article and Find Full Text PDFThe resistance mechanisms that limit the efficacy of retinoid therapy in cancer are poorly understood. Sphingosine kinase 2 (SphK2) is a highly conserved enzyme that is mainly located in the nucleus and endoplasmic reticulum. Unlike well-studied sphingosine kinase 1 (SphK1) located in the cytosol, little has yet understood the functions of SphK2.
View Article and Find Full Text PDFDes-γ-carboxyprothrombin (DCP), an abnormal prothrombin produced in human hepatocellular carcinoma (HCC), plays crucial roles in the progression of HCC. DCP binding to cellular mesenchymal-epithelial transition factor (c-Met) is an initial event and consequently stimulates HCC through the increase of c-Met-Janus kinase 1- signal transducers and activators of transcription pathways. DCP stimulates HCC invasion through activation of matrix metalloproteinase via upregulation of extracellular signal-regulated kinase-mitogen-activated protein kinase (MAPK) pathway.
View Article and Find Full Text PDFMyricetin is a natural dietary flavonoid compound. We evaluated the efficacy of myricetin against intestinal tumorigenesis in adenomatous polyposis coli multiple intestinal neoplasia (APCMin/+) mice. Myricetin was given orally once a day for 12 consecutive weeks.
View Article and Find Full Text PDFDespite significant progress, advanced hepatocellular carcinoma (HCC) remains an incurable disease, and the overall efficacy of targeted therapy by Sorafenib remains moderate. We hypothesized that DCP (des-gamma-carboxy prothrombin), a prothrombin precursor produced in HCC, might be one of the reasons linked to the low efficacy of Sorafenib. We evaluated the efficacy of Sorafenib in HLE and SK-Hep cells, both of which are known DCP-negative HCC cell lines.
View Article and Find Full Text PDFPurpose: Naringin is a natural dietary flavonoid compound. We aimed to evaluate the effects of naringin on intestinal tumorigenesis in the adenomatous polyposis coli multiple intestinal neoplasia (Apc (Min/+)) mouse model.
Methods: Apc (Min/+) mice were given either naringin (150 mg/kg) or vehicle by p.
Type I insulin-like growth factor receptor (IGF1R) signal is involved in normal physiology and many disease progressions. In this study, we presented the role of IGF1R in colorectal cancer cell lines. Results showed that knockdown of IGF1R using small interfering RNA in HT-29, SW620 cells strongly inhibited cell proliferation, arrested cell cycle and also promoted cell apoptosis.
View Article and Find Full Text PDF{2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM) is a novel indole compound, which possessed high efficacy against many cancers xenografted in mice without obvious toxicity. In this study, we aimed to investigate the effects of MIAM on human hepatocellular carcinoma (HCC) Bel-7402 cells and its resistant variants Bel-7402/5FU. MIAM inhibited the growth of HCC more potent in Bel-7402/5FU cells than its parent cells.
View Article and Find Full Text PDF