Publications by authors named "Xian Chang Li"

Liver X receptors α and β are members of the nuclear receptor family, which comprise a flexible N-terminal domain, a DNA binding domain, a hinge linker, and a ligand binding domain. Liver X receptors are important regulators of cholesterol and lipid homeostasis by controlling the transcription of numerous genes. Key to their transcriptional role is synergetic interaction among the domains.

View Article and Find Full Text PDF

Background: Infections by viruses including severe acute respiratory syndrome coronavirus 2 could cause organ inflammations such as myocarditis, pneumonia and encephalitis. Innate immunity to viral nucleic acids mediates antiviral immunity as well as inflammatory organ injury. However, the innate immune mechanisms that control viral induced organ inflammations are unclear.

View Article and Find Full Text PDF

Innate immune cells are critical in protective immunity against viral infections, involved in sensing foreign viral nucleic acids. Here we report that the poly(ADP-ribose) polymerase 9 (PARP9), a member of PARP family, serves as a non-canonical sensor for RNA virus to initiate and amplify type I interferon (IFN) production. We find knockdown or deletion of PARP9 in human or mouse dendritic cells and macrophages inhibits type I IFN production in response to double strand RNA stimulation or RNA virus infection.

View Article and Find Full Text PDF

The innate immunity is critically important in protection against virus infections, and in the case of RNA viral infections, the signaling mechanisms that initiate robust protective innate immunity without triggering autoimmune inflammation remain incompletely defined. In this study, we found the E3 ligase TRIM29 was specifically expressed in poly I:C-stimulated human myeloid dendritic cells. The induced TRIM29 played a negative role in type I IFN production in response to poly I:C or dsRNA virus reovirus infection.

View Article and Find Full Text PDF

Th9 cells are prominently featured in allergic lung inflammation, but the mechanism that regulates IL-9 induction in T helper cells remains poorly defined. Here we demonstrate that formation of super-enhancers (SEs) is critical in robust induction of IL-9 and that assembly of the SEs in Th cells requires OX40-triggered chromatin acetylation. Mechanistically, we found that OX40 costimulation induces RelB expression, which recruits the histone acetyltransferase p300 to the locus to catalyze H3K27 acetylation.

View Article and Find Full Text PDF

Ischemia and reperfusion injury (IRI) is an inevitable event in conventional organ transplant procedure and is associated with significant mortality and morbidity post-transplantation. We hypothesize that IRI is avoidable if the blood supply for the organ is not stopped, thus resulting in optimal transplant outcomes. Here we described the first case of a novel procedure called ischemia-free organ transplantation (IFOT) for patients with end-stage liver disease.

View Article and Find Full Text PDF

Many double-stranded DNA viruses, such as Epstein-Barr virus, can establish persistent infection, but the underlying virus-host interactions remain poorly understood. Here we report that in human airway epithelial cells Epstein-Barr virus induces TRIM29, a member of the TRIM family of proteins, to inhibit innate immune activation. Knockdown of TRIM29 in airway epithelial cells enhances type I interferon production, and in human nasopharyngeal carcinoma cells results in almost complete Epstein-Barr virus clearance.

View Article and Find Full Text PDF

Maintaining immune tolerance requires the production of Foxp3-expressing regulatory T (T) cells in the thymus. Activation of NF-κB transcription factors is critically required for T cell development, partly via initiating Foxp3 expression. NF-κB activation is controlled by a negative feedback regulation through the ubiquitin editing enzyme A20, which reduces proinflammatory signaling in myeloid cells and B cells.

View Article and Find Full Text PDF

Tissue-resident immune cells play a key role in local and systemic immune responses. The liver, in particular, hosts a large number of invariant natural killer T (iNKT) cells, which are involved in diverse immune responses. However, the mechanisms that regulate survival and homeostasis of liver iNKT cells are poorly defined.

View Article and Find Full Text PDF
Article Synopsis
  • Myeloid-derived suppressor cells (MDSCs) are cells that help tumors grow and make it harder for cancer treatments to work.
  • These cells are found more in mice with tumors and in people with cancer, and they can stop the immune system from fighting the cancer.
  • The review talks about special proteins called LILRs that are found on these cells, how they affect different diseases, and ideas for new treatments that could make MDSCs less harmful to patients.
View Article and Find Full Text PDF

The respiratory tract is heavily populated with innate immune cells, but the mechanisms that control such cells are poorly defined. Here we found that the E3 ubiquitin ligase TRIM29 was a selective regulator of the activation of alveolar macrophages, the expression of type I interferons and the production of proinflammatory cytokines in the lungs. We found that deletion of TRIM29 enhanced macrophage production of type I interferons and protected mice from infection with influenza virus, while challenge of Trim29 mice with Haemophilus influenzae resulted in lethal lung inflammation due to massive production of proinflammatory cytokines by macrophages.

View Article and Find Full Text PDF

T helper 17 (Th17) cells are prominently featured in multiple autoimmune diseases, but the regulatory mechanisms that control Th17 cell responses are poorly defined. Here we found that stimulation of OX40 triggered a robust chromatin remodeling response and produced a "closed" chromatin structure at interleukin-17 (IL-17) locus to inhibit Th17 cell function. OX40 activated the NF-κB family member RelB, and RelB recruited the histone methyltransferases G9a and SETDB1 to the Il17 locus to deposit "repressive" chromatin marks at H3K9 sites, and consequently repressing IL-17 expression.

View Article and Find Full Text PDF

Glucocorticoid-induced TNFR-related protein (GITR) is a costimulatory molecule with diverse effects on effector T cells and regulatory T cells (Tregs), but the underlying mechanism remains poorly defined. Here we demonstrate that GITR ligation subverts the induction of Foxp3(+) Tregs and directs the activated CD4(+) T cells to Th9 cells. Such GITR-mediated iTreg to Th9 induction enhances anti-tumour immunity in vivo.

View Article and Find Full Text PDF

Micro- and nanometer-size particles have become popular candidates for cancer vaccine adjuvants. However, the mechanism by which such particles enhance immune responses remains unclear. Here, we report a porous silicon microparticle (PSM)-based cancer vaccine that greatly enhances cross-presentation and activates type I interferon (IFN-I) response in dendritic cells (DCs).

View Article and Find Full Text PDF

The peripheral Foxp3(+) Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4(+) T cells can be readily converted to Foxp3(+) iTreg in vitro, and memory CD4(+) T cells are resistant to conversion. In this study, we investigated the induction of Foxp3(+) T cells from various CD4(+) T-cell subsets in human peripheral blood.

View Article and Find Full Text PDF

The mechanisms that regulate the T(H)9 subset of helper T cells and diseases mediated by T(H)9 cells remain poorly defined. Here we found that the costimulatory receptor OX40 was a powerful inducer of T(H)9 cells in vitro and T(H)9 cell-dependent airway inflammation in vivo. In polarizing conditions based on transforming growth factor-β (TGF-β), ligation of OX40 inhibited the production of induced regulatory T cells and the T(H)17 subset of helper T cells and diverted CD4(+)Foxp3(-) T cells to a T(H)9 phenotype.

View Article and Find Full Text PDF

Genome-wide association studies have identified susceptibility loci for esophageal squamous cell carcinoma (ESCC). We conducted a meta-analysis of all single-nucleotide polymorphisms (SNPs) that showed nominally significant P-values in two previously published genome-wide scans that included a total of 2961 ESCC cases and 3400 controls. The meta-analysis revealed five SNPs at 2q33 with P< 5 × 10(-8), and the strongest signal was rs13016963, with a combined odds ratio (95% confidence interval) of 1.

View Article and Find Full Text PDF

Both innate and adaptive immune cells are actively involved in the initiation and destruction of allotransplants, and there is a true need now to look beyond T cells in the allograft response, examining various non-T-cell types in transplant models and how such cell types interact with T cells in determining the fate of an allograft. Studies in this area may lead to further improvement in transplant outcomes.

View Article and Find Full Text PDF

Several types of T cells with immunosuppressive properties have been identified, but FOXP3(+) regulatory T (T(REG)) cells have emerged as a dominant cell type; they are critically involved in the induction and maintenance of immune tolerance. Manipulation of this cell type for the induction of transplant tolerance including renal transplant tolerance has attracted considerable attention. Studies in this area have demonstrated unexpected complexities, and attempts to translate T(REG) cells towards clinical utility have met with unanticipated difficulties.

View Article and Find Full Text PDF

OX40 is a member of the TNFR superfamily and has potent T cell costimulatory activities. OX40 also inhibits the induction of Foxp3(+) regulatory T cells (Tregs) from T effector cells, but the precise mechanism of such inhibition remains unknown. In the present study, we found that CD4(+) T effector cells from OX40 ligand-transgenic (OX40Ltg) mice are highly resistant to TGF-beta mediated induction of Foxp3(+) Tregs, whereas wild-type B6 and OX40 knockout CD4(+) T effector cells can be readily converted to Foxp3(+) T cells.

View Article and Find Full Text PDF

Purpose Of Review: In the past few years, much effort has been focused on the identification of new pathways, new mechanisms, and new therapeutic targets in transplant models. Understanding of T-cell costimulatory molecules remains one of the highly contested areas of research. In this review, we will focus specifically on OX40, and summarize the latest developments on the role of OX40 in transplant models.

View Article and Find Full Text PDF

The role of OX40 in the islet allograft tolerance, especially in the absence of CD154 costimulation, remains poorly defined. In the present study, we used CD154 deficient mice to critically examine the role of OX40 in the activation of T effector cells and Foxp3+ Tregs and the effect of blocking OX40 on the induction of islet allograft tolerance. We found that blocking OX40 costimulation in CD154 deficient mice induced donor specific tolerance but stimulating OX40 resulted in prompt islet allograft rejection.

View Article and Find Full Text PDF