Background: Angiogenesis is crucial in neuroprotection of secondary thalamic injury after cortical infarction. The p75 neurotrophin receptor (p75) plays a key role in activating angiogenesis. However, the effects of p75 on angiogenesis in the thalamus after cortical infarction are largely unknown.
View Article and Find Full Text PDFHuman embryonic stem cells-derived neural progenitor cells (hESCs-NPCs) transplantation holds great potential to treat stroke. We previously reported that delayed secondary degeneration occurs in the ventroposterior nucleus (VPN) of ipsilateral thalamus after distal branch of middle cerebral artery occlusion (dMCAO) in adult male Sprague-Dawley (SD) rats. In this study, we investigate whether hESCs-NPCs would benefit the neural recovery of the secondary damage in the VPN after focal cerebral infarction.
View Article and Find Full Text PDFRhodiola sacra is a widely used pharmaceutical component with multiple functions, including anti-oxidation and anti-inflammation. However, the exact mechanisms involved in neuroprotection against transient global cerebral ischemia (tGCI) remain to be elucidated. Herein, we aim at closing the gap in understanding on whether rhodiola sacra reduces neuronal death in hippocampal CA1 and at demonstrating how rhodiola sacra offers neuroprotection after tGCI.
View Article and Find Full Text PDFDelayed secondary degeneration in the non-ischemic sites such as ipsilateral thalamus would occur after cortical infarction. Hence, alleviating secondary damage is considered to be a promising novel target for acute stroke therapy. In the current study, the neuroprotective effects of bis(propyl)-cognitin (B3C), a multifunctional dimer, against secondary damage in the VPN of ipsilateral thalamus were investigated in a distal middle cerebral artery occlusion (dMCAO) stroke model in adult rats.
View Article and Find Full Text PDFTransplantation of bone marrow stromal cells (BMSCs) is a promising therapy for ischemic stroke. Previously, we had reported that the secondary degeneration occurred in the ipsilateral substantia nigra (SN) after permanent distal branch of middle cerebral artery occlusion (dMCAO) in Sprague-Dawley rats. However, whether BMSCs have neurorestorative effects on the secondary damage in the SN after focal cerebral infarction has not known.
View Article and Find Full Text PDFRhynchophylline is a major tetracyclic oxindole alkaloid in , which has been extensively used as traditional herb medicine for the prevention of convulsions and hypertension. However, there is still little evidence about the neuroprotective effects of rhynchophylline for Parkinson's disease (PD), a neurodegenerative condition currently without any effective cure. In this present study, the neuroprotective molecular mechanisms of rhynchophylline were investigated in a cellular model associated with PD.
View Article and Find Full Text PDFStroke is the leading cause of adult disability in the world. In general, recovery from stroke is incomplete. Accumulating evidences have shown that focal cerebral infarction leads to dynamic trans-neuronal degeneration in non-ischemic remote brain regions, with the disruption of connections to synapsed neurons sustaining ischemic insults.
View Article and Find Full Text PDFIn recent years, long noncoding RNAs (lncRNAs) have been shown to have critical roles in a broad range of cell biological processes. However, the activities of lncRNAs during ischemic stroke remain largely unknown. In this study, we carried out a genome-wide lncRNA microarray analysis in rat brains with ischemia/reperfusion (I/R) injury.
View Article and Find Full Text PDFSecondary degeneration in areas beyond ischemic foci can inhibit poststroke recovery. The cysteine protease Cathepsin B (CathB) regulates cell death and intracellular protein catabolism. To investigate the roles of CathB in the development of secondary degeneration in the ventroposterior nucleus (VPN) of the ipsilateral thalamus after focal cerebral infarction, infarct volumes, immunohistochemistry and immunofluorescence, and Western blotting analyses were conducted in a distal middle cerebral artery occlusion (dMCAO) stroke model in adult rats.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
May 2016
Objective: To explore a method for combining Fluoro-Jade B (FJB) staining with immunofluorescent staining in rats with focal cortical infarction.
Method: Permanent distal middle cerebral artery occlusion (dMCAO) was induced in rats by electrocoagulation. The rat models were randomized into two groups, and frozen sections of the brain tissues from each group were stained with FJB followed by immunofluorescent staining or in the reverse order.
Int J Neurosci
September 2016
There are two patterns of ischemia/reperfusion (I/R) models used in rat middle cerebral artery occlusion (MCAO) I/R models, which differ in the use of unilateral or bilateral carotid artery reperfusion. The primary difference between the two patterns of I/R models is the complexity of the surgery procedure. However, researchers in this field have no idea whether there are any differences in outcomes of these two methods.
View Article and Find Full Text PDFα-Lipoic acid (ALA) is known as a powerful antioxidant, which has been reported to have protective effects against various cardiovascular diseases. The present study aimed to determine whether ALA pre- or post-treatment induced protective effects against hypoxia/reoxygenation-induced injury via inhibition of apoptosis and autophagy in human umbilical vein endothelial cells (HUVECs). In order to simulate the conditions of hypoxia/reoxygenation, HUVECs were subjected to 4 h of oxygen-glucose deprivation (OGD) followed by 12 h of reoxygenation.
View Article and Find Full Text PDFIt is well established that the brain is sensitive to ischemia/reperfusion (I/R)‑induced injury. α‑lipoic acid (LA), a free radical scavenger and antioxidant, has a neuroprotective effect against cerebral I/R‑induced injury, however, the underlying mechanisms remain to be elucidated. Therefore, the present study was undertaken to evaluate whether LA was able to protect against cerebral I/R‑induced injury and to examine the potential mechanisms.
View Article and Find Full Text PDFNucleic Acids Res
October 2014
The clinical application of small interfering RNA (siRNA) has been restricted by their poor intracellular uptake, low serum stability, and inability to target specific cells. During the last several decades, a great deal of effort has been devoted to exploring materials for siRNA delivery. In this study, biodegradable, tumor-targeted, self-assembled peptide nanoparticles consisting of cyclo(Arg-Gly-Asp-d-Phe-Lys)-8-amino-3,6-dioxaoctanoic acid-β-maleimidopropionic acid (hereafter referred to as RPM) were found to be an effective siRNA carrier both in vitro and in vivo.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs) have been attracting immense research interest, while only a handful of lncRNAs have been characterized thoroughly. Their involvement in the fundamental cellular processes including regulate gene expression at epigenetics, transcription, and post-transcription highlighted a central role in cell homeostasis. However, lncRNAs studies are still at a relatively early stage, their definition, conservation, functions, and action mechanisms remain fairly complicated.
View Article and Find Full Text PDFAims: To compare the efficacy and safety of daily lipoic acid (300-600 mg i.v.) plus methylcobalamin (500-1000 mg i.
View Article and Find Full Text PDFRNA targeting the murine vascular endothelial growth factor receptor 2 (VEGFR2) gene was designed and validated for efficient and robust silencing in vitro and was delivered by polyethylenimines (PEI) in vivo to investigate the antitumor effect on non-small cell lung cancer (NSCLC) xenografts. The following dosage regimens were tested for their tumor inhibitory effect in vivo: VEGFR2 siRNA, epidermal growth factor receptor (EGFR) siRNA, VEGFR2 siRNA+EGFR siRNA, cisplatin alone and VEGFR2 siRNA+ EGFR siRNA+cisplatin. Targeted silencing of both VEGFR2 and EGFR expression by siRNA, combined with low-dose cisplatin, was found to effectively inhibit tumor growth and extend the survival time of mice bearing the NSCLC xenografts.
View Article and Find Full Text PDFStroke is one of the leading causes of death and disability worldwide. In past decades, researchers have studied the physiopathology and biochemistry of stroke, but knowledge of the molecular mechanisms underlying this disease remains at an early stage. To date, only recombinant tissue plasminogen activator (rtPA) has been approved by the USA FDA for acute ischemic stroke.
View Article and Find Full Text PDFVarious epidemiologic studies in recent years have indicated that light/moderate alcohol consumers have lower risks of nerve degenerative disease, suggesting that ethanol have neuroprotective effect. Ethanol is known to be involved in many signaling pathway, such as AMPK, protein kinase B/AKT and protein kinase C. Recently, some researches found that acute ethanol have neuroprotective effect, the mechanisms underlying it (acute ethanol-induced) are not completely understood.
View Article and Find Full Text PDFA variety of intraluminal nylon filament has been used in rat middle cerebral artery occlusion (MCAO) models. However the lesion extent and its reproducibility vary among laboratories. The properties of nylon filament play a part of reasons for these variations.
View Article and Find Full Text PDFIntroduction: MicroRNAs (miRNAs), a class of small, regulatory and non-coding RNA molecules, display aberrant expression patterns and functional abnormalities in all kinds of human diseases including cancers. As important emerging modulators in cellular pathways, miRNAs play a key role in tumorigenesis. Correcting these miRNA deficiencies by either up-regulating or down-regulating miRNA function may provide a therapeutic benefit.
View Article and Find Full Text PDF