The β-1,4 galactosylation catalyzed by β-1,4 galactosyltransferases (β4Gal-Ts) is not only closely associated with diverse physiological and pathological processes in humans but also widely applied in the -glycan modification of protein glycoengineering. The loop-closing process of β4Gal-Ts is an essential intermediate step intervening in the binding events of donor substrate (UDP-Gal/Mn) and acceptor substrate during its catalytic cycle, with a significant impact on the galactosylation activities. However, the molecular mechanisms in regulating loop-closing dynamics are not entirely clear.
View Article and Find Full Text PDFKawasaki disease (KD) has emerged as the leading cause of acquired heart disease in children, primarily due to the absence of highly sensitive and specific biomarkers for early and accurate diagnosis. To address this issue, a simple and comprehensive targeted metabolomics method employing ultra high-performance liquid chromatography coupled with Q-TRAP mass spectrometry has been developed to identify new metabolite biomarkers for KD. This method enables the simultaneous quantification of 276 metabolites, covering 60 metabolic pathways, with a particular emphasis on metabolites relevant to KD.
View Article and Find Full Text PDFMost microbe-associated infectious diseases severely affect human health. However, clinical diagnosis of pathogenic diseases remains challenging due to the lack of specific and highly reliable methods. To better understand the diagnosis, pathogenesis, and treatment of these diseases, systems biology-driven metabolomics goes beyond the annotated phenotype and better targets the functions than conventional approaches.
View Article and Find Full Text PDFTraditional Chinese medicines (TCMs) produce chemically diverse functional compounds that are importantly chemical resource for facilitating new drug discovery and development against a diversity of diseases. However, modern exploration of TCM derived functional compounds is significantly hindered by the inefficient elucidation of pharmacological functions over past decades, because conventional research methods are incapable of efficiently elucidating therapeutic potential of TCM conferred by multiple functional compounds. Functional metabolomics has the priority-capacity to characterize systems therapeutic actions of TCM by precisely capturing molecular interactions between disease response metabolite biomarkers (DRMB) and functional compounds (secondary metabolites), which underline pharmacological efficiency and associated therapeutic mechanisms.
View Article and Find Full Text PDFBiofilms are broadly formed by diverse microorganisms under stressful environments that are basically surrounded by an EPS matrix, which enable bacterial cells to confer the resistance to the biocides, antibiotics and other invasions. Yet, biofilms cause harmful impacts in various fields, including clinical infections, food contaminations and environmental pollution. However, the mechanism of biofilm formation remains incompletely elucidated, and currently, we lack an efficient strategy to tackle these tough problems by eradicating biofilms.
View Article and Find Full Text PDFInflammatory bowel diseases (IBD) are kind of recurrent inflammatory issues that occur in the gastrointestinal tract, and currently clinical treatment is still unideal due to the complex pathogenesis of IBD. Basically, gut barrier dysfunction is triggered by gut microbiota dysbiosis that is closely associated with the development of IBD, we thus investigated the therapeutic capacity of berberine (BBR) to improve the dysregulated gut microbiota, against IBD in rats, using a combinational strategy of targeted metabolomics and 16 s rDNA amplicon sequencing technology. Expectedly, our data revealed that BBR administration could greatly improve the pathological phenotype, gut barrier disruption, and the colon inflammation in rats with dextran sulfate sodium (DSS)-induced colitis.
View Article and Find Full Text PDFPancreatic cancer (PC) is becoming one of the deadliest cancers, with mortality among the highest worldwide because of its pathogenic latency and the lack of efficient drugs in the clinic. Considering that cancer cells undergo proliferation and differentiation at substantial metabolic costs, as indicated by dysregulated glycolysis and an abnormal TCA cycle induced by mitochondrial damage, we investigated the therapeutic capacity of berberine (BBR) in pancreatic cancer using a cell metabolomics method. A phenotypic assay revealed the significant inhibitory role of BBR in PC cell viability and metastasis.
View Article and Find Full Text PDFPancreatic cancer (PC) is one of the most aggressive malignancies with high mortality due to a complex and latent pathogenesis leading to the severe lack of early diagnosis methods. To improve clinical diagnosis and enhance therapeutic outcome, we employed the newly developed precision-targeted metabolomics method to identify and validate metabolite biomarkers from the plasma samples of patients with pancreatic cancer that can sensitively and efficiently diagnose the onsite progression of the disease. Many differential metabolites have the capacity to markedly distinguish patients with pancreatic cancer (n = 60) from healthy controls (n = 60).
View Article and Find Full Text PDFTraditional Chinese medicine (TCM) has been broadly used for the personalized treatment of many diseases in China for thousands of years. In the past century, TCM was also introduced to other Asian countries and even the Western world. Increasing evidence has shown that TCM has the capacity to treat numerous complex diseases in the clinic, such as cardiovascular diseases (CVDs), infectious diseases, metabolic diseases, and neurodegenerative diseases.
View Article and Find Full Text PDFSiderophores are chemically diverse small molecules produced by microorganisms for chelation of irons to maintain their survival and govern some important biological functions, especially those cause that infections in hosts. Still, siderophores can offer new insight into a better understanding of the diagnosis and treatments of infectious diseases from the siderophore biosynthesis and regulation perspective. Thus, this review aims to summarize the biomedical value and applicability of siderophores in pathogenic contexts by briefly reviewing mass spectrometry (MS)-based chemical biology and translational applications that involve diagnosis, pathogenesis, and therapeutic discovery for a variety of infectious conditions caused by different pathogens.
View Article and Find Full Text PDFA new dynamic covalent polymer (DCP) gel was well designed and constructed based on imine chemistry. Polycondensation of 4,4'-biphenyldicarboxaldehyde and 1,3,5-benzenetricarbohydrazide via Schiff-base reaction resulted in an acylhydrazone bond gel (AB-gel) DCP. AB-gel DCP had three-dimensional network of interconnected nanoparticles with hierarchically porous structure.
View Article and Find Full Text PDFIn this work, a novel NH-MIL-53(Al) incorporated poly(styrene-divinylbenzene-methacrylic acid) (poly(St-DVB-MAA)) monolith was prepared via chemical fabrication. Moreover, it has been efficiently applied to the in-tube solid-phase microextraction (SPME) for online coupling with high-performance liquid chromatography (HPLC) to the direct determination of five estrogens in human urine samples. The NH-MIL-53(Al)-polymer monolith was suitable for in-tube SPME owing to its good permeability, high extraction efficiency, chemical stability, good reproducibility and long lifetime.
View Article and Find Full Text PDFSmall polar molecules such as nucleosides, amines, amino acids are important analytes in biological, food, environmental, and other fields. It is necessary to develop efficient sample preparation and sensitive analytical methods for rapid analysis of these polar small molecules in complex matrices. Some typical materials in sample preparation, including silica, polymer, carbon, boric acid and so on, are introduced in this paper.
View Article and Find Full Text PDF