Publications by authors named "Xialei Guo"

The structural stability and electrochemical performance of intrinsic and B doped T-graphene nanotubes with different tube lengths are systematically studied by using first-principles calculations within the framework of density functional theory (DFT). The results show that with the increase of tube length, the adsorption energy of both intrinsic and B doped T-graphene nanotubes exhibits regular oscillations, and B doping is beneficial for elevating the adsorption ability of T-graphene nanotubes. The density of states show that intrinsic T-graphene nanotubes are zero band gap semiconductors, and the orbitals' electronic states cross the Fermi level to form a p-type semiconductor, indicating that B doping greatly improves the conductivity of the system.

View Article and Find Full Text PDF

Using first-principles calculation based on density functional theory, the effects of B, Al and B-Al doping on the structural stability and electrochemical properties of silicene were systematically studied, and their potential as anode materials for lithium ion batteries was evaluated. The calculated results of formation energy indicate that the doped system has good stability. The charge density difference and density of states show that doping can improve the conductivity of silicene, and enhance the interaction with Li.

View Article and Find Full Text PDF

The first-principles method of density functional theory (DFT) is used to study the structural stability and electrochemical properties of B doped graphene with concentrations of 3.125%, 6.25% and 18.

View Article and Find Full Text PDF

Exopolysaccharide (EPS) produced by Streptococcus thermophilus GST-6 in skim milk was extracted and purified. The EPS was composed of glucose and galactose in a molar ratio of 1.80:1.

View Article and Find Full Text PDF