Lysophosphatidic acid acyltransferases (LPAATs) catalyze the formation of phosphatidic acid (PA), a central metabolite in both prokaryotic and eukaryotic organisms for glycerolipid biosynthesis. Phaeodactylum tricornutum contains at least two plastid-localized LPAATs (ptATS2a and ptATS2b), but their roles in lipid synthesis remain unknown. Both ptATS2a and ptATS2b could complement the high temperature sensitivity of the bacterial plsC mutant deficient in LPAAT.
View Article and Find Full Text PDFLong-chain acyl-CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil-producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown. In P.
View Article and Find Full Text PDFBackground: In photosynthetic oleaginous microalgae, acyl-CoA molecules are used as substrates for the biosynthesis of membrane glycerolipids, triacylglycerol (TAG) and other acylated molecules. Acyl-CoA can also be directed to beta-oxidative catabolism. They can be utilized by a number of lipid metabolic enzymes including endogenous thioesterases, which catalyze their hydrolysis to release free fatty acids.
View Article and Find Full Text PDF