Publications by authors named "Xiahe Huang"

There exists a pressing need for a non-invasive panel that differentiates mild fibrosis from non-fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD). In this work, we applied quantitative lipidomics and sterolomics on sera from the PERSONS cohort with biopsy-based histological assessment of liver pathology. We trained a lasso regression model using quantitative omics data and clinical variables, deriving a combinatorial panel of lipids and clinical indices that differentiates mild fibrosis (>F1, n = 324) from non-fibrosis (F0, n = 195), with an area under receiver operating characteristic curve (AUROC) at 0.

View Article and Find Full Text PDF

Strigolactones (SLs) are hormones essential for plant development and environmental responses. SL perception requires the formation of the complex composed of an SL receptor DWARF14 (D14), F-box protein D3, and transcriptional repressor D53, triggering ubiquitination and degradation of D53 to activate signal transduction. However, mechanisms of SL perception and their influence on plant architecture and environmental responses remain elusive and controversial.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies the RNA-binding protein EOG1, which influences the abundance of grain-size-related mRNAs and leads to increased grain size by promoting cell proliferation in the spikelet hull.
  • * The interaction between EOG1 and OsGSK3 is crucial for regulating grain size and weight independently of the GS2 gene, and similar editing in wheat homologs can also produce larger, heavier grains, indicating potential applications for crop improvement.
View Article and Find Full Text PDF

Stomatal movement plays a critical role in plant immunity by limiting the entry of pathogens. OPEN STOMATA 1 (OST1) is a key component that mediates stomatal closure in plants, however, how OST1 functions in response to pathogens is not well understood. RECEPTOR-LIKE KINASE 902 (RLK902) phosphorylates BRASSINOSTEROID-SIGNALING KINASE 1 (BSK1) and positively modulates plant resistance.

View Article and Find Full Text PDF

The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid β-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in . Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis.

View Article and Find Full Text PDF

Glycosyltransferases (GTs) are enzymes that transfer sugars to various targets. They play important roles in diverse biological processes, including photosynthesis, cell motility, exopolysaccharide biosynthesis, and lipid metabolism; however, their involvement in regulating carbon metabolism in Synechocystis sp. PCC 6803 has not been reported.

View Article and Find Full Text PDF

Carboxysomes are large self-assembled microcompartments that serve as the central machinery of a CO-concentrating mechanism (CCM). Biogenesis of carboxysome requires the fine organization of thousands of individual proteins; however, the packaging pattern of internal RuBisCOs remains largely unknown. Here we purified the intact β-carboxysomes from Synechococcus elongatus PCC 7942 and identified the protein components by mass spectrometry.

View Article and Find Full Text PDF

Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways. The transcriptional repressor proteins SUPPRESSOR OF MAX2 1 (SMAX1), SMAX1-like2 (SMXL2), and D53-like SMXLs mediate karrikin and strigolactone signaling by directly binding downstream genes or by inhibiting the activities of transcription factors. In this study, we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis.

View Article and Find Full Text PDF

Background And Objective: Deep vein thrombosis (DVT) is a common complication after trauma and mostly without specific symptoms. Timely diagnosis and early appropriate treatment measures can prevent further development of thrombosis for patients with traumatic lower extremity fractures. Although extracellular vesicles (EVs) are confirmed as promising disease biomarkers, little is known about the role of altered levels and composition in the diagnosis of post-traumatic DVT.

View Article and Find Full Text PDF

Protein phosphorylation regulates a variety of important cellular and physiological processes in plants. In-depth profiling of plant phosphoproteomes has been more technically challenging than that of animal phosphoproteomes. This is largely due to the need to improve protein extraction efficiency from plant cells, which have a dense cell wall, and to minimize sample loss resulting from the stringent sample clean-up steps required for the removal of a large amount of biomolecules interfering with phosphopeptide purification and mass spectrometry analysis.

View Article and Find Full Text PDF

The manchette is a crucial transient structure involved in sperm development, with its composition and regulation still not fully understood. This study focused on investigating the roles of CAMSAP1 and CAMSAP2, microtubule (MT) minus-end binding proteins, in regulating manchette MTs, spermiogenesis, and male fertility. The loss of CAMSAP1, but not CAMSAP2, disrupts the well-orchestrated process of spermiogenesis, leading to abnormal manchette elongation and delayed removal, resulting in deformed sperm nuclei and tails resembling oligoasthenozoospermia symptoms.

View Article and Find Full Text PDF

Salinity is one of the most severe abiotic stresses that adversely affect plant growth and agricultural productivity. The plant Na/H antiporter Salt Overly Sensitive 1 (SOS1) located in the plasma membrane extrudes excess Na out of cells in response to salt stress and confers salt tolerance. However, the molecular mechanism underlying SOS1 activation remains largely elusive.

View Article and Find Full Text PDF

As evolutionarily conserved organelles, lipid droplets (LDs) carry out numerous functions and have various subcellular localizations in different cell types and species. In avian cone cells, there is a single apically localized LD. We demonstrated that CIDEA (cell death inducing DFFA like effector a) and microtubules promote the formation of the single LD in chicken cone cells.

View Article and Find Full Text PDF

Nitric oxide (NO) is a key signaling molecule affecting the response of plants to salt stress; however, the underlying molecular mechanism is poorly understood. In this study, we conducted a phenotype analysis and found that the small GTPase RABG3E (RAB7) promotes salt tolerance in Arabidopsis thaliana. NO promotes the S-nitrosylation of RAB7 at Cys-171, which in turn helps maintain the ion balance in salt-stressed plants.

View Article and Find Full Text PDF

Carbon metabolism is central to photosynthetic organisms and involves the coordinated operation and regulation of numerous proteins. In cyanobacteria, proteins involved in carbon metabolism are regulated by multiple regulators including the RNA polymerase sigma factor SigE, the histidine kinases Hik8, Hik31 and its plasmid-borne paralog Slr6041, and the response regulator Rre37. To understand the specificity and the cross-talk of such regulations, we simultaneously and quantitatively compared the proteomes of the gene knockout mutants for the regulators.

View Article and Find Full Text PDF

The use of alkaline salt lands for crop production is hindered by a scarcity of knowledge and breeding efforts for plant alkaline tolerance. Through genome association analysis of sorghum, a naturally high-alkaline-tolerant crop, we detected a major locus, (), specifically related to alkaline-salinity sensitivity. An allele with a carboxyl-terminal truncation increased sensitivity, whereas knockout of increased tolerance to alkalinity in sorghum, millet, rice, and maize.

View Article and Find Full Text PDF

Spatial proteome reorganization in response to a changing environment represents a different layer of adaptation mechanism in addition to differential expression of a subset of stress responsive genes in photosynthetic organisms. Profiling such reorganization events is critically important to extend our understanding how photosynthetic organisms adapt to adverse environments. Thus, we treated a unicellular photosynthetic model cyanobacterium, sp.

View Article and Find Full Text PDF
Article Synopsis
  • Calorie restriction (CR) was studied in male mice to understand its effect on aging and extended lifespan by analyzing changes in their liver proteins after varying levels of CR for three months.
  • Key metabolic pathways like glycolysis and fatty acid degradation were significantly activated by increased CR, but there was reduced production of major urinary proteins, indicating a lower investment in reproduction.
  • The study found no significant changes in main pathways associated with lifespan, like IGF-1 and mTOR, suggesting that the observed protein expression patterns align more with a "clean cupboards" model rather than supporting the "disposable soma" hypothesis.
View Article and Find Full Text PDF

While endogenous lipids are known to exhibit rhythmic oscillations, less is known about how specific lipids modulate circadian behavior. Through a series of loss-of-function and gain-of-function experiments on ceramide phosphoethanolamine (CPE) synthase of , we demonstrated that pan-glial-specific deficiency in membrane CPE, the structural analog of mammalian sphingomyelin (SM), leads to arrhythmic locomotor behavior and shortens lifespan, while the reverse is true for increasing CPE. Comparative proteomics uncovered dysregulated synaptic glutamate utilization and transport in CPE-deficient flies.

View Article and Find Full Text PDF

Liquid chromatography-mass spectrometry (LC-MS) is a major tool for the large-scale qualitative and/or quantitative analysis of protein phosphorylation in cells or tissues. The performance of LC is pivotal for the success of phosphoproteomics in both sensitivity and reproducibility. Here, we report that the widely used Easy-nLC 1200 has poor performance in analyzing phosphopeptides, particularly in terms of sensitivity and reproducibility, whereas its predecessor, Easy-nLC 1000, has a much better performance.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Fu Fang Gang Liu (FFGL) is an effective formula for treating wart proliferation caused by human papillomavirus (HPV) infection and has the potential to treat HPV-related cancers. However, scientific evidence of its anti-tumor activity against cervical cancer, the most common cancer caused by HPV, is lacking.

Aim Of The Study: To clarify the anti-tumor effect of an FFGL aqueous extract on human cervical cancer and its possible mechanism of cell cycle arrest in HeLa cells.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of pathologies, ranging from steatosis to nonalcoholic steatohepatitis (NASH). The factors promoting the progression of steatosis to NASH are still unclear. Recent studies suggest that mitochondrial lipid composition is critical in NASH development.

View Article and Find Full Text PDF

Ascorbate peroxidase (APEX)-based proximity labeling coupled with mass spectrometry has a great potential for spatiotemporal identification of proteins proximal to a protein complex of interest. Using this approach is feasible to define the proteome neighborhood of important protein complexes in a popular photosynthetic model cyanobacterium Synechocystis sp. PCC6803 (hereafter named as Synechocystis).

View Article and Find Full Text PDF

Clean and sustainable H production is crucial to a carbon-neutral world. H generation by Chlamydomonas reinhardtii is an attractive approach for solar-H from HO. However, it is currently not large-scalable because of lacking desirable strains with both optimal H productivity and sufficient knowledge of underlying molecular mechanism.

View Article and Find Full Text PDF

Human papillomaviruses (HPVs) cause a subset of head and neck squamous cell carcinomas (HNSCCs). Previously, we demonstrated that HPV16 oncogene E6 or E6/E7 transduction increases the abundance of O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT), but OGT substrates affected by this increase are unclear. Here, we focus on the effects of O-GlcNAcylation on HPV-positive HNSCCs.

View Article and Find Full Text PDF