Objective: The zonal properties of articular cartilage critically contribute to the mechanical support and lubrication of the tissue. Current treatments for articular cartilage have yet to regenerate this zonal architecture, thus compromising the functional efficacy of the repaired tissue and leading to tissue degeneration in the long term. In this study, the efficacy of zonal cartilage regeneration through bilayered implantation of expanded autologous zonal chondrocytes was investigated in a porcine chondral defect model.
View Article and Find Full Text PDFBackground: Previous studies have reported the efficacy of human mesenchymal stem cell (MSC) exosomes for the repair of osteochondral defects in rats and rabbits. However, the safety and efficacy of MSC exosomes remain to be validated in a clinically relevant large animal model.
Purpose: To validate the safety and efficacy of human MSC exosomes for osteochondral repair in a clinically relevant micropig model.
Purpose: To compare the efficacy of mesenchymal stem cell (MSC) exosomes with hyaluronic acid (HA) against HA alone for functional cartilage regeneration in a rabbit osteochondral defect model.
Methods: Critical-size osteochondral defects (4.5-mm diameter and 1.
Background: Articular cartilage has a zonal architecture and biphasic mechanical properties. The recapitulation of surface lubrication properties with high compressibility of the deeper layers of articular cartilage during regeneration is essential in achieving long-term cartilage integrity. Current clinical approaches for cartilage repair, especially with the use of mesenchymal stem cells (MSCs), have yet to restore the hierarchically organized architecture of articular cartilage.
View Article and Find Full Text PDFA variety of controlled release carriers for bone morphogenetic protein 2 (BMP-2) delivery have been developed and tested in animal models. An alginate-based polyelectrolyte complex (PEC) for controlled release of low-dose BMP-2 has shown promising results in preclinical research. However, the poor handling properties and long-term stability of PEC need to be improved for translational applications.
View Article and Find Full Text PDFHuman mesenchymal stem cell (hMSC) therapy offers significant potential for osteochondral regeneration. Such applications require their ex vivo expansion in media frequently supplemented with fibroblast growth factor 2 (FGF2). Particular heparan sulfate (HS) fractions stabilize FGF2-FGF receptor complexes.
View Article and Find Full Text PDFBone morphogenetic protein 2 (BMP-2) is widely used in spinal fusion but it can cause adverse effects such as ectopic bone and adipose tissue . Neural epidermal growth factor like-like molecule-1 (NELL-1) has been shown to suppress BMP-2-induced adverse effects. However, no optimum carriers that control both NELL-1 and BMP-2 releases to elicit long-term bioactivity have been developed.
View Article and Find Full Text PDFRecombinant human bone morphogenetic protein-2 (rhBMP-2) has been widely used in spine fusion surgery. However, high doses of rhBMP-2 delivered with absorbable collagen sponge (ACS) have led to inflammation-related adverse conditions. Polyelectrolyte complex (PEC) control release carrier can substantially reduce the rhBMP-2 dose and complication without compromising fusion.
View Article and Find Full Text PDFRepairing damaged joint cartilage remains a significant challenge. Treatment involving microfracture, tissue grafting, or cell therapy provides some benefit, but seldom regenerates lost articular cartilage. Providing a point-of-care solution that is cell and tissue free has the potential to transform orthopedic treatment for such cases.
View Article and Find Full Text PDFCurrent clinical approaches for articular cartilage repair have not been able to restore the tissue with zonal architecture, and its biomechanical and functional properties. Mimicking the zonal organization of articular cartilage in neo-tissue by implanting zonal chondrocyte subpopulations in multilayer construct could enhance the functionality of the graft, engineering of stratified tissue has not yet been realized due to lack of efficient and specific zonal chondrocyte isolation protocol. We show that by using a spiral microchannel device, the superficial, middle and deep zone chondrocytes can be separated based on cell size, and enriched from full thickness porcine cartilage in a high-throughput, label-free manner.
View Article and Find Full Text PDFCurrent surgical techniques for osteochondral injuries in young active patients are inadequate clinically. Novel strategies in tissue engineering are continuously explored in this area. Despite numerous animal studies that have shown encouraging results, very few large-scale clinical trials have been done to address this area of interest.
View Article and Find Full Text PDFBackground: Management of osteochondritis dissecans remains a challenge. Use of oligo[poly(ethylene glycol)fumarate] (OPF) hydrogel scaffold alone has been reported in osteochondral defect repair in small animal models. However, preclinical evaluation of usage of this scaffold alone as a treatment strategy is limited.
View Article and Find Full Text PDF