The Akt pathway is frequently hyperactivated in human cancer and functions as a cardinal nodal point for transducing extracellular and intracellular oncogenic signals and, thus, presents an exciting target for molecular therapeutics. Here we report the identification of a small molecule Akt/protein kinase B inhibitor, API-1. Although API-1 is neither an ATP competitor nor substrate mimetic, it binds to pleckstrin homology domain of Akt and blocks Akt membrane translocation.
View Article and Find Full Text PDFThe serine protease HtrA2/Omi is released from the mitochondria into the cytosol following apoptosis stimuli, leading to the programmed cell death in caspase-dependent and -independent manners. The function of HtrA2/Omi closely relates to its protease activity, which is required for cleavage of its substrate such as the members of the X-linked inhibitor of apoptotic protein family. However, the regulation of HtrA2/Omi by signaling molecule has not been documented.
View Article and Find Full Text PDFAccumulated studies have shown that activation of the Akt pathway plays a pivotal role in malignant transformation and chemoresistance by inducing cell survival, growth, migration, and angiogenesis. Therefore, Akt is believed to be a critical target for cancer intervention. Here, we report the discovery of a small molecule Akt pathway inhibitor, Akt/protein kinase B signaling inhibitor-2 (API-2), by screening the National Cancer Institute Diversity Set.
View Article and Find Full Text PDFRecent studies have demonstrated that the cell growth and antiapoptotic actions of androgen could be dissociated from the transcriptional activity of the receptor and were, instead, mediated by activation of a mitogen-activated protein kinase pathway. This finding suggests an important cellular function of androgen receptor (AR) outside the nucleus. In this report, we demonstrate that androgen activates phosphatidylinositol 3-kinase (PI3K) and Akt, including AKT1 and AKT2, in AR-positive cells.
View Article and Find Full Text PDF