Metal foam flow field suffers serious corrosion issues in proton exchange membrane fuel cells due to its large surface area. Ni and Ni/graphene coatings are prepared under constant and gradient current modes, respectively, to improve the corrosion resistance. The effect of the electrodeposition current mode and the deposition mechanism is studied.
View Article and Find Full Text PDFThe encapsulation of the proton-exchange membrane fuel cell (PEMFC) is an essential step of fuel cell stack assembly. The selection of the assembly pressure is very important to the stack performance and life. Based on that, this paper presents a method to describe the internal physical deformation of the gas diffusion layer (GDL) after inhomogeneous pressure by using user-defined functions (UDFs).
View Article and Find Full Text PDFMicromachines (Basel)
June 2023
Porous metal foam with complex opening geometry has been used as a flow field to enhance the distribution of reactant gas and the removal of water in polymer electrolyte membrane fuel cells. In this study, the water management capacity of a metal foam flow field is experimentally investigated by polarization curve tests and electrochemical impedance spectroscopy measurements. Additionally, the dynamic behavior of water at the cathode and anode under various flooding situations is examined.
View Article and Find Full Text PDFMicromachines (Basel)
October 2022
Chemical functionalization of carbon support for Pt catalysts is a promising way to enhance the performance of catalysts. In this study, Pt/C catalysts grafted with various amounts of phenylsulfonic acid groups were prepared under mild conditions. The influence of sulfonic acid groups on the physiochemical characteristics and electrochemical activities of the modified catalysts were studied using X-ray diffraction, X-ray photoelectron spectroscopy, a transmission electron microscope, and cyclic voltammetry (CV).
View Article and Find Full Text PDFSoil physicochemical properties and microbial diversity both play equally important roles in tobacco cultivation. However, the relationship between these factors remains unclear. In this study, we investigated their correlations through the whole tobacco growth period, including the pretransplanting (YX-p), root extending (R), flourishing (F), and mature (M) stages in the Yuxi region of the Yunnan-Guizhou Plateau by measuring physicochemical properties and conducting 16S/18S rRNA analysis.
View Article and Find Full Text PDF