Publications by authors named "Xia Chengyao"

Xylanases derived from fungi, including phytopathogenic and nonpathogenic fungi, are commonly known to trigger plant immune responses. However, there is limited research on the ability of bacterial-derived xylanases to trigger plant immunity. Here, a novel xylanase named CcXyn was identified from the myxobacterium Cystobacter sp.

View Article and Find Full Text PDF

Public metabolites such as vitamins play critical roles in maintaining the ecological functions of microbial community. However, the biochemical and physiological bases for fine-tuning of public metabolites in the microbiome remain poorly understood. Here, we examine the interactions between myxobacteria and Phytophthora sojae, an oomycete pathogen of soybean.

View Article and Find Full Text PDF

Fungal cell wall decomposition enzymes exhibit great potential for the development of efficient antifungal agents. However, their practical application is restricted due to incomplete understanding of the action mode. In our previous study, we identified that a novel outer membrane (OM) β-1,6-glucanase GluM is deployed by predatory myxobacteria to feed on fungi.

View Article and Find Full Text PDF

As social micropredators, myxobacteria are studied for their abilities to prey on bacteria and fungi. However, their predation of oomycetes has received little attention. Here, we show that Archangium sp.

View Article and Find Full Text PDF

The β-1,6-glucan is the key linker between mannoproteins in the outermost part of the cell wall and β-1,3-glucan/chitin polysaccharide to maintain the rigid structure of the cell wall. The β-1,6-glucanase GluM, which was purified from the fermentation supernatant of sp. EGB, was able to inhibit the germination of Fusarium oxysporum f.

View Article and Find Full Text PDF

Chitosanases hydrolyze chitosan into chitooligosaccharides (COSs) with various biological activities, which are widely employed in many areas including plant disease management. In this study, the novel chitosanase AqCsn1 belonging to the glycoside hydrolase family 46 (GH46) was cloned from Aquabacterium sp. A7-Y and heterologously expressed in Escherichia coli BL21 (DE3).

View Article and Find Full Text PDF

Dietary starch with an increased content of resistant starch (RS) has the potential to reduce the prevalence of diabetes, obesity, and cardiovascular diseases. Here, an efficient glycogen branching enzyme, CcGBE, from sp. strain EGB was identified, and its relevant properties, including potential application in the preparation of modified starch, were evaluated.

View Article and Find Full Text PDF

The β-glucan from is a potent adjuvant that exhibits a broad spectrum of biological activities and health benefits, and different processes have been established to prepare active β-glucan from yeast. However, studies concerning the effect of β-1,6-glucanase enzymolysis on the structure and immunomodulatory activity of yeast β-1,3-glucan are scarce. In this study, we aim to develop a novel enzymatic process for the preparation of immunologically active β-glucan (BYG) from baker's yeast using a β-1,6-glucanase GluM.

View Article and Find Full Text PDF

Maltogenic amylase CoMA from Corallococcus sp. strain EGB catalyzes the hydrolysis and transglycosylation of maltooligosaccharides and soluble starch into maltose, the sole hydrolysate. This process yields pure maltose with potentially wide applications.

View Article and Find Full Text PDF

sp. strain EGB is a Gram-negative myxobacteria isolated from saline soil, and has considerable potential for the biocontrol of phytopathogenic fungi. However, the detailed mechanisms related to development and predatory behavior are unclear.

View Article and Find Full Text PDF

Modified potato starch with slower digestion may aid the development of new starch derivatives with improved nutritional values, and strategies to increase nutritional fractions such as resistant starch (RS) are desired. In this study, a correspondence between starch structure and enzymatic resistance was provided based on the efficient branching enzyme AqGBE, and modified starches with different amylose content (Control, 100%; PS1, 90%; PS2, 72%; PS3, 32%; PS4, 18%) were prepared. Through SEM observation, NMR and X-ray diffraction analyses, we identified that an increased proportion of α-1,6-linked branches in potato starch changes its state of granule into large pieces with crystallinity.

View Article and Find Full Text PDF

Enzymes that degrade fungal cell walls and the resulting oligosaccharides are promising weapons to combat plant fungal disease. In this study, we identified a novel endo-chitosanase, CoA, from sp. A7-Y.

View Article and Find Full Text PDF

Myxobacterial predation on bacteria has been investigated for several decades. However, their predation on fungi has received less attention. Here, we show that a novel outer membrane β-1,6-glucanase GluM from Corallococcus sp.

View Article and Find Full Text PDF

As the main component of the fungal cell wall, chitin has been regarded as an optimal molecular target for the biocontrol of plant-pathogenic fungi. In this study, the chitin hydrolase CcCti1, which belongs to the glycoside hydrolase family 18 (GH 18) and exhibits potential antifungal activity, was identified from Corallococcus sp. EGB.

View Article and Find Full Text PDF