In recent years, efficient oil-water separation has gradually become an indispensable part of environmental treatment. Superhydrophobic/superoleophilic materials with excellent self-cleaning performance are urgently required and remain challenging in the investigation of practical, rapid, and efficient separation of oil-water mixture and emulsion, especially those with robust surfaces that can be used in harsh conditions. In this work, a novel superhydrophobic/superoleophilic material was first fabricated by in situ constructing PDMS@ZIF-7/Cu(PO) hierarchical architectures on a copper mesh, which was adopted as a high flux and efficient separation material for gravity-driven separation of oil-water mixture as well as emulsion.
View Article and Find Full Text PDFBackground: The superior cervical ganglion (SCG) plays critical roles in the regulation of blood pressure and cardiac output. Metabotropic glutamate receptors (mGluRs) in the SCG are not clearly elucidated yet. Most studies on the expression and functions of mGluRs in the SCG focused on the cultured SCG neurons, and yet little information has been reported in the SCG tissue.
View Article and Find Full Text PDFGlioma is one of the most common primary brain tumors. Gambogic acid (GA) is widely used in tumor chemotherapy. However, GA has poor water solubility, low bioavailability, and difficult permeability across the blood-brain barrier (BBB), leading to poor efficacy against brain tumors.
View Article and Find Full Text PDFBackground: The blood-brain barrier (BBB) inhibits the delivery of macromolecular chemotherapeutic drugs to brain tumors, leading to low utilization rates and toxic side effects to surrounding tissues and organs. Ultrasonic targeted microbubble destruction (UTMD) technology can open the BBB, leading to a new type of drug delivery system with particular utility in glioma.
Purpose: We have developed a new type of drug-loaded microbubble complex based on poly(lactic-co-glycolic acid) (PLGA) that targets gambogic acid (GA) to the area of brain tumors through UTMD.
Gambogic acid (GA) is a highly effective antitumor agent, and it is used for the treatment of a wide range of cancers. It is challenging to deliver drugs to the central nervous system due to the inability of GA to cross the blood-brain barrier (BBB). Studies have shown that ultrasound-targeted microbubble destruction can be used for transient and reversible BBB disruption, significantly facilitating intracerebral drug delivery.
View Article and Find Full Text PDFBrain-derived nerve growth factor (BDNF) is a promising effective target for the treatment of Alzheimer's disease (AD). BDNF, which has a high molecular weight, has difficulty in crossing the blood-brain barrier (BBB). The study aimed to prepare microbubbles loading brain-derived nerve growth factor (BDNF) retrovirus (MpLXSN-BDNF), to verify the characteristics of the microbubbles, and to study the therapeutic effect of the microbubbles combined with ultrasound on the opening of the blood-brain barrier in an AD rat model.
View Article and Find Full Text PDFGlial cell line derived neurotropic factor (GDNF) plays a crucial role in the development and maintenance of glial cells, serotonergic and dopaminergic neurons. A positively therapeutic effect has been demonstrated on some animal neurodegenerative diseases. However, the inability to deliver the protein across blood brain barrier (BBB) into damaged brain region limits its clinical application.
View Article and Find Full Text PDFLibraries of single-stranded oligodeoxynucleotides (ssODNs) can be enriched for sequences that specifically bind molecules on naïve complex biological samples like cells or tissues. Depending on the enrichment strategy, the ssODNs can identify molecules specifically associated with a defined biological condition, for example a pathological phenotype, and thus are potentially useful for biomarker discovery. We performed ADAPT, a variant of SELEX, on exosomes secreted by VCaP prostate cancer cells.
View Article and Find Full Text PDFIn this study, the capsules were prepared via the one-step titration-gel method by injecting spherical droplets of polyvinyl alcohol (PVA), sodium alginate (SA) and graphene oxide (GO) gelled mixture into the bath with calcium chloride (CaCl) and oversaturated boric acid (HBO) solutions. The prepared capsules were then further modified with glutaraldehyde (GA). The formation mechanism of the prepared capsules was investigated.
View Article and Find Full Text PDFAssessing the phenotypic diversity underlying tumour progression requires the identification of variations in the respective molecular interaction networks. Here we report proof-of-concept for a platform called poly-ligand profiling (PLP) that surveys these system states and distinguishes breast cancer patients who did or did not derive benefit from trastuzumab. We perform tissue-SELEX on breast cancer specimens to enrich single-stranded DNA (ssDNA) libraries that preferentially interact with molecular components associated with the two clinical phenotypes.
View Article and Find Full Text PDFTechnologies capable of characterizing the full breadth of cellular systems need to be able to measure millions of proteins, isoforms, and complexes simultaneously. We describe an approach that fulfils this criterion: Adaptive Dynamic Artificial Poly-ligand Targeting (ADAPT). ADAPT employs an enriched library of single-stranded oligodeoxynucleotides (ssODNs) to profile complex biological samples, thus achieving an unprecedented coverage of system-wide, native biomolecules.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2017
We describe the use of a frame-guided assembly (FGA) strategy to construct cuboid and dumbbell-shaped hetero-vesicles on DNA origami nanostructure scaffolds. These are achieved by varying the design of the DNA origami scaffolds that direct the distribution of the leading hydrophobic groups (LHG). By careful selection of LHGs, different types of amphiphiles (both polymer and small-molecule surfactants) were guided to form hetero-vesicles, demonstrating the versatility of the FGA strategy and its potential to construct asymmetric and dynamic hetero-vesicle assemblies with complex DNA nano-scaffolds.
View Article and Find Full Text PDFCONSPECTUS: DNA nanotechnology is one of the most flourishing interdisciplinary research fields. DNA nanostructures can be designed to self-assemble into a variety of periodic or aperiodic patterns of different shapes and length scales. They can be used as scaffolds for organizing other nanoparticles, proteins, and chemical groups, leveraging their functions for creating complex bioinspired materials that may serve as smart drug delivery systems, in vitro or in vivo biomolecular computing platforms, and diagnostic devices.
View Article and Find Full Text PDFUnderstanding the thermodynamic properties of complex DNA nanostructures, including rationally designed two- and three-dimensional (2D and 3D, respectively) DNA origami, facilitates more accurate spatiotemporal control and effective functionalization of the structures by other elements. In this work fluorescein and tetramethylrhodamine (TAMRA), a Förster resonance energy transfer (FRET) dye pair, were incorporated into selected staples within various 2D and 3D DNA origami structures. We monitored the temperature-dependent changes in FRET efficiency that occurred as the dye-labeled structures were annealed and melted and subsequently extracted information about the associative and dissociative behavior of the origami.
View Article and Find Full Text PDFA conductive nanoporous antimony-doped tin oxide (ATO) powder has been prepared using the sol-gel method that contains three-dimensionally interconnected pores within the metal oxide and highly tunable pore sizes on the nanoscale. It is demonstrated that these porous materials possess the capability of hosting a tetrahedral-shaped DNA nanostructure of defined dimensions with high affinity. The tunability of pore size enables the porous substrate to selectively absorb the DNA nanostructures into the metal oxide cavities or exclude them from entering the surface layer.
View Article and Find Full Text PDFScaffolded DNA origami, a method to create self-assembled nanostructures with spatially addressable features, has recently been used to develop water-soluble molecular chips for label-free RNA detection, platforms for deterministic protein positioning, and single molecule reaction observatories. These applications highlight the possibility of exploiting the unique properties and biocompatibility of DNA nanostructures in live, cellular systems. Herein, we assembled several DNA origami nanostructures of differing shape, size and probes, and investigated their interaction with lysate obtained from various normal and cancerous cell lines.
View Article and Find Full Text PDFWe demonstrate the synthesis of near-IR-emitting zinc blende CdTe/CdS tetrahedral-shaped nanocrystals with a magic-sized (approximately 0.8 nm radius) CdTe core and a thick CdS shell (up to 5 nm). These high-quality water-soluble nanocrystals were obtained by a simple but reliable aqueous method at low temperature.
View Article and Find Full Text PDF