Cefoperazone/sulbactam is a commonly used antibiotic combination against the extended-spectrum beta-lactamases (ESBLs)-producing bacteria. The objective of this study was to evaluate the efficacy of a new cefoperazone/sulbactam combination (3:1) for Enterobacteriaceae infection via model-informed drug development (MIDD) approaches. Sulperazon [cefoperazone/sulbactam (2:1)] was used as a control.
View Article and Find Full Text PDFBenapenem is a novel carbapenem. The objective of this study was to determine the pharmacokinetic (PK)/pharmacodynamic (PD) cutoff values and evaluate the optimal administration regimens of benapenem for the treatment of bacterial infections via PK/PD modeling and simulation. Ertapenem was used as a control.
View Article and Find Full Text PDFAntimicrob Agents Chemother
March 2019
The objective of this trial was to investigate the safety, tolerability, and pharmacokinetics (PK) of benapenem administered by single or multiple intravenous infusions in healthy Chinese volunteers. The trial was divided into 3 parts. In part A, 94 subjects were enrolled in a double-blind, placebo-controlled, sequential-ascending-single-dose study.
View Article and Find Full Text PDFVancomycin, a glycopeptide antibiotic for the treatment of grampositive infections, is mainly eliminated via glomerular filtration. Thus, its therapeutic effects are affected predominantly by renal function. The aim of this study was to develop a population pharmacokinetic model of vancomycin for Chinese adult patients and to investigate the influence of different renal function descriptors on the predictability of the model.
View Article and Find Full Text PDFAim: The novel anticancer compound TM208 is an EGFR tyrosine kinase inhibitor (EGFR-TKI). Since the development of resistance to EGFR-TKIs is a major challenge in their clinical usage, we investigated the profiles of resistance following continuous treatment with TM208 in human breast cancer xenograft mice, and identified the relationship between the tumor pEGFR levels and tumor growth inhibition.
Methods: Female BALB/c nude mice were implanted with human breast cancer MCF-7 cells, and the xenograft mice received TM208 (50 or 150 mg·kg(-1)·d(-1), ig) or vehicle for 18 d.
Aim: Sulfotransferase-catalyzed sulfation is the most important pathway for inactivating estrogens. Thus, activation of estrogen sulfotransferase (EST) may be an alternative approach for the treatment of estrogen-dependent breast cancer. In this study we investigated the involvement of EST in anti-breast cancer effects of the dithiocarbamate derivative TM208 in vitro and in vivo.
View Article and Find Full Text PDFIntroduction: Sustained exposure to excessive estrogen is an established risk factor for breast cancer. Sulfotransferase (SULT)-mediated sulfonation represents an effective approach for estrogen deprivation as estrogen sulfates do not bind and activate estrogen receptors (ERs). The nuclear receptor (NR) superfamily functions as a sensor for xenobiotics as well as endogenous molecules, which can regulate the expression of SULT.
View Article and Find Full Text PDFAim: To investigate the effects of a novel dithiocarbamate derivative TM208 on human breast cancer cells as well as the pharmacokinetic characteristics of TM208 in human breast cancer xenograft mice.
Methods: Human breast cancer MCF-7 and MDA-MB-231 cells were treated with TM208 or a positive control drug tamoxifen. Cell proliferation was examined using SRB and colony formation assays.