Cannabis, often recognized as the most widely used illegal psychoactive substance globally, has seen a shift in its legal status in several countries and regions for both recreational and medicinal uses. This change has brought to light new evidence linking cannabis consumption to various vascular conditions. Specifically, there is an association between cannabis use and atherosclerosis, along with conditions such as arteritis, reversible vasospasm, and incidents of aortic aneurysm or dissection.
View Article and Find Full Text PDFAs the only aquatic lineage of Pteridaceae, Parkerioideae is distinct from many xeric-adapted species of the family and consists of the freshwater species and the only mangrove ferns from the genus . Previous studies have shown that whole genome duplication (WGD) has occurred in Parkerioideae at least once and may have played a role in their adaptive evolution; however, more in-depth research regarding this is still required. In this study, comparative and evolutionary transcriptomics analyses were carried out to identify WGDs and explore their roles in the environmental adaptation of Parkerioideae.
View Article and Find Full Text PDFMALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a human paracaspase protein with proteolytic activity via its caspase-like domain. The pharmacological inhibition of MALT1 by MI-2, a specific chemical inhibitor, diminishes the response of endothelial cells to inflammatory stimuli. However, it is largely unknown how MALT1 regulates the functions of vascular smooth muscle cells (SMCs).
View Article and Find Full Text PDFBackground: Aging, a complex and profound journey, leads us through a labyrinth of physiological and pathological transformations, rendering us increasingly susceptible to aging-related diseases. Emerging investigations have unveiled the function of bromodomain containing protein 4 (BRD4) in manipulating the aging process and driving the emergence and progression of aging-related diseases.
Aim Of Review: This review aims to offer a comprehensive outline of BRD4's functions involved in the aging process, and potential mechanisms through which BRD4 governs the initiation and progression of various aging-related diseases.
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling.
View Article and Find Full Text PDFAtherosclerosis (AS) is a major contributor to morbidity and mortality worldwide. However, the molecular mechanisms and mediator molecules involved remain largely unknown. Copper, which plays an essential role in cardiovascular disease, has been suggested as a potential risk factor.
View Article and Find Full Text PDFTM6SF2, predominantly expressed in the liver and intestine, is closely associated with lipid metabolism. We have demonstrated the presence of TM6SF2 in VSMCs within human atherosclerotic plaques. Subsequent functional studies were conducted to investigate its role in lipid uptake and accumulation in human vascular smooth muscle cells (HAVSMCs) using siRNA knockdown and overexpression techniques.
View Article and Find Full Text PDFThis article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).
View Article and Find Full Text PDFUpon migrating into the tissues, hematopoietic stem cell (HSC)-derived monocytes differentiate into macrophages, playing a crucial role in determining innate immune responses towards external pathogens and internal stimuli. However, the regulatory mechanisms underlying monocyte-to-macrophage differentiation remain largely unexplored. Here we divulge a previously uncharacterized but essential role for an axon guidance molecule, fibronectin leucine-rich transmembrane protein 2 (FLRT2), in monocyte-to-macrophage maturation.
View Article and Find Full Text PDFNeointima lesion and atherosclerosis are proliferative vascular diseases associated with deregulated proliferation of vascular smooth muscle cells (SMCs). CFI-400945 is a novel, highly effective anticancer drug that inhibits polo-like kinase 4 (PLK4) and targets mitosis. In this study, we aim to investigate how CFI-400945 affects the development of proliferative vascular diseases.
View Article and Find Full Text PDFBackground: Stent implantation-induced neointima formation is a dominant culprit in coronary artery disease treatment failure after percutaneous coronary intervention. Ferroptosis, an iron-dependent regulated cell death, has been associated with various cardiovascular diseases. However, the effect of ferroptosis on neointima formation remains unclear.
View Article and Find Full Text PDFAtherosclerosis (AS) is a complex chronic inflammatory disease that leads to myocardial infarction, stroke, and disabling peripheral artery disease. Non-coding RNAs (ncRNAs) directly participate in various physiological processes and exhibit a wide range of biological functions. The present review discusses how different ncRNAs participate in the process of AS in various carrier forms.
View Article and Find Full Text PDFObjective: PCSK9 (proprotein convertase subtilisin/kexin type 9) plays a critical role in cholesterol metabolism via the PCSK9-LDLR (low-density lipoprotein receptor) axis in the liver; however, evidence indicates that PCSK9 directly contributes to the pathogenesis of various diseases through mechanisms independent of its LDL-cholesterol regulation. The objective of this study was to determine how PCSK9 directly acts on vascular smooth muscle cells (SMCs), contributing to degenerative vascular disease. Approach and Results: We first examined the effects of PCSK9 on cultured human aortic SMCs.
View Article and Find Full Text PDFMicroRNA-199a-5p (miR-199a-5p) and -3p are enriched in the myocardium, but it is unknown whether miR-199a-5p and -3p are co-expressed in cardiac remodeling and what roles they have in cardiac hypertrophy and fibrosis. We show that miR-199a-5p and -3p are co-upregulated in the mouse and human myocardium with cardiac remodeling and in Ang-II-treated neonatal mouse ventricular cardiomyocytes (NMVCs) and cardiac fibroblasts (CFs). miR-199a-5p and -3p could aggravate cardiac hypertrophy and fibrosis and .
View Article and Find Full Text PDFAspirin and curcumin have been reported to be beneficial to anti-aging in a variety of biological models. Here, we synthesized a novel compound, curcumin acetylsalicylate (CA), by combining aspirin and curcumin. We characterized how CA affects the lifespan of () worms.
View Article and Find Full Text PDFMitochondrial DNA B Resour
September 2021
The complete chloroplast genome sequence of was assembled and analyzed in this work. The total chloroplast genome size of was 148,124 bp in length, containing a large single-copy (LSC) region of 86,079 bp, a small single-copy (SSC) region of 10,799 bp, and a pair of inverted repeat (IR) regions of 25,623 bp. The GC content of was 36.
View Article and Find Full Text PDFDespite improvements in cardiovascular disease (CVD) outcomes by cholesterol-lowering statin therapy, the high rate of CVD is still a great concern worldwide. Dehydrocorydaline (DHC) is an alkaloidal compound isolated from the traditional Chinese herb Corydalis yanhusuo. Emerging evidence shows that DHC has anti-inflammatory and antithrombotic benefits, but whether DHC exerts any antiatherosclerotic effects remains unclear.
View Article and Find Full Text PDFAutophagy
January 2021
Bromodomain-containing protein 4 (BRD4), a chromatin-binding protein, is involved in the development of various tumors. Recent evidence suggests that BRD4 also plays a significant role in cardiovascular diseases, such as ischemic heart disease, hypertension, and cardiac hypertrophy. This review summarizes the roles of BRD4 as a potential regulator of various pathophysiological processes in cardiovascular diseases, implicating that BRD4 may be a new therapeutic target for cardiovascular diseases in the future.
View Article and Find Full Text PDF