Ying Yong Sheng Tai Xue Bao
March 2024
We established the optimal model by using the automatic machine learning method to predict the degradation efficiency of herbicide atrazine in soil, which could be used to assess the residual risk of atrazine in soil. We collected 494 pairs of data from 49 published articles, and selected seven factors as input features, including soil pH, organic matter content, saturated hydraulic conductivity, soil moisture, initial concentration of atrazine, incubation time, and inoculation dose. Using the first-order reaction rate constant of atrazine in soil as the output feature, we established six models to predict the degradation efficiency of atrazine in soil, and conducted comprehensive analysis of model performance through linear regression and related evaluation indicators.
View Article and Find Full Text PDFCurrent anatomic TNM stage classification fails to capture the immune heterogeneity of oral squamous cell carcinoma (OSCC). Increasing evidence indicates the strong association between epithelial-mesenchymal transition (EMT) and tumor immune response. In this study, we employed an EMT signature to classify OSCC patients into epithelial- (E-) and mesenchymal- (M-) phenotypes using TCGA and GSE41613 transcriptome data.
View Article and Find Full Text PDFImmunotherapy has been demonstrated as a promising strategy in controlling head and neck squamous cell carcinoma (HNSC). The AID/APOBEC family is well characterized as DNA mutator and considered to play critical roles in immune responses in HNSC. However, the expression pattern and deamination-dependent demethylation roles of AID/APOBECs in HNSC are unclear.
View Article and Find Full Text PDFObjective: To understand the immune molecular landscapes of the two major costimulatory and coinhibitory pathways (B7 and TNFR families) in oral squamous cell carcinoma.
Methods: The B7 family members (CD80, CD86, CD274, ICOSLG, CD276, VTCN1, NCR3LG1, HHLA2 and PDCD1LG2) and TNFR family members (TNFSF4, CD40, CD70, TNFSF9, TNFRSF14 and TNFSF18) were used to analyse the costimulatory and coinhibitory pathway alterations in oral squamous cell carcinoma. The online tools UCSC Xena and cBioPortal were used to derive oral squamous cell carcinoma patients' clinical parameters, mRNA levels, mutations, DNA copy number alterations and methylation levels.
Ying Yong Sheng Tai Xue Bao
November 2017
The application of sewage and manure in protected vegetable cultivation can induce the occurrence of heavy metals contamination. The present research studied the transformation of heavy metals (Cd, Cu, Pb and Zn) by incubating contaminated protected soil with maize straw and then leaching. The results showed that soil pH was significantly decreased, being more evident in maize straw treatment; soil Eh dropped quickly below -280 mV.
View Article and Find Full Text PDFThis research aimed to explore the role of miR-135a-5p in head and neck squamous cell carcinoma (HNSCC) cells and its influence on cell viability. Moreover, we aimed to compare effects of miR-135a-5p and miR-494 in HNSCC, which was found to repress expression in oral cancer. The association between miR-135a-5p and was confirmed by green fluorescence protein reporter assay and qRT-PCR.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2007
We have previously shown that cardiogenic pulmonary edema fluid (EF) increases Na(+) and fluid transport by fetal distal lung epithelia (FDLE) (Rafii B, Gillie DJ, Sulowski C, Hannam V, Cheung T, Otulakowski G, Barker PM and O'Brodovich H. J Physiol 544: 537-548, 2002). We now report the effect of EF on Na(+) and fluid transport by the adult lung.
View Article and Find Full Text PDFEfficient gas exchange in the lungs depends on regulation of the amount of fluid in the thin (average 0.2 mum) liquid layer lining the alveolar epithelium. Fluid fluxes are regulated by ion transport across the alveolar epithelium, which is composed of alveolar type I (TI) and type II (TII) cells.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
April 2006
Dopamine increases lung fluid clearance. This is partly due to activation of basolateral Na-K-ATPase. However, activation of Na-K-ATPase by itself is unlikely to produce large changes in transepithelial transport.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2004
Fluid-free alveolar space is critical for normal gas exchange. Influenza virus alters fluid transport across respiratory epithelia producing rhinorrhea, middle ear effusions, and alveolar flooding. However, the mechanism of fluid retention remains unclear.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
April 2002
We investigated the mechanism by which cAMP increases sodium transport in lung epithelial cells. Alveolar type II (ATII) cells have two types of amiloride-sensitive, cation channels: a nonselective cation channel (NSC) and a highly selective channel (HSC). Exposure of ATII cells to cAMP, beta-adrenergic agonists, or other agents that increase adenylyl cyclase activity increased activity of both channel types, albeit by different mechanisms.
View Article and Find Full Text PDF