The functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cerebral cortex. The cortical sheet can be broadly divided into distinct networks, which are embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here using microarray data from the Allen Human Brain Atlas and single-nucleus RNA-sequencing data from multiple cortical territories, we demonstrate that cell-type distributions are spatially coupled to the functional organization of cortex, as estimated through functional magnetic resonance imaging.
View Article and Find Full Text PDFThe human brain experiences functional changes through childhood and adolescence, shifting from an organizational framework anchored within sensorimotor and visual regions into one that is balanced through interactions with later-maturing aspects of association cortex. Here, we link this profile of functional reorganization to the development of ventral attention network connectivity across independent datasets. We demonstrate that maturational changes in cortical organization link preferentially to within-network connectivity and heightened degree centrality in the ventral attention network, whereas connectivity within network-linked vertices predicts cognitive ability.
View Article and Find Full Text PDFThe functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cortex. The cortical sheet can be broadly divided into distinct networks, which are further embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here, using transcriptional data from the Allen Human Brain Atlas, we demonstrate that imputed cell type distributions are spatially coupled to the functional organization of cortex, as estimated through fMRI.
View Article and Find Full Text PDFThe human cortex is organized in a hierarchical manner. Pines et al. show that wave-like hemodynamic activity flows along this architecture, from unimodal through association cortices, providing fertile ground for researchers seeking to map links across behavioral and cognitive states.
View Article and Find Full Text PDFBackground: Individual differences in functional brain connectivity can be used to predict both the presence of psychiatric illness and variability in associated behaviors. However, despite evidence for sex differences in functional network connectivity and in the prevalence, presentation, and trajectory of psychiatric illnesses, the extent to which disorder-relevant aspects of network connectivity are shared or unique across the sexes remains to be determined.
Methods: In this work, we used predictive modeling approaches to evaluate whether shared or unique functional connectivity correlates underlie the expression of psychiatric illness-linked behaviors in males and females in data from the Adolescent Brain Cognitive Development Study (N = 5260; 2571 females).