Background: Ischemia-reperfusion (IR)-induced pain hypersensitivity shares features of neuroinflammation and neuropathic pain, accompanied by overproduction of interleukin (IL)-1β. Multiple microRNAs (miRs) are dysregulated during IR; among these miRs, miR-187-3p was recently reported to drive IL-1β release in retinal disease by activating members of the purinergic receptor family. However, the roles of miR-187-3p in the spinal cord are unclear.
View Article and Find Full Text PDFToll-like receptor 4 (TLR4) is important for the pathogenesis of inflammatory reactions and the promotion of pain processing after ischemia/reperfusion (IR) in spinal cord. Recently, C-X-C chemokine ligand 12 (CXCL12) and its receptor, C-X-C chemokine receptor 4 (CXCR4), were demonstrated to be simultaneously critical for inflammatory reactions, thereby facilitating glial activation. However, whether CXCL12/CXCR4 expression can contribute to IR-induced inflammatory pain via spinal TLR4 remained unclear.
View Article and Find Full Text PDFBackground: Spinal cord edema is a serious complication and pathophysiological change after ischemia reperfusion (IR) injury. It has been demonstrated closely associated with bimodal disruption of blood-spinal cord barrier (BSCB) in our previous work. Aquaporin (AQP)1 plays important but contradictory roles in water homeostasis.
View Article and Find Full Text PDFBackground: Infection is a common cause of acute lung injury (ALI). This study was aimed to explore whether Toll-like receptors 4 (TLR4) of airway smooth muscle cells (ASMCs) play a role in lipopolysaccharide (LPS)-induced airway hyperresponsiveness and potential mechanisms.
Methods: In vivo: A sensitizing dose of LPS (50 µg) was administered i.
Ischemic preconditioning has been reported to protect against spinal cord ischemia-reperfusion (I-R) injury, but the underlying mechanisms are not fully understood. To investigate this, Japanese white rabbits underwent I-R (30 min aortic occlusion followed by reperfusion), ischemic preconditioning (three cycles of 5 min aortic occlusion plus 5 min reperfusion) followed by I-R, or sham surgery. At 4 and 24 h following reperfusion, neurological function was assessed using Tarlov scores, blood spinal cord barrier permeability was measured by Evan's Blue extravasation, spinal cord edema was evaluated using the wet-dry method, and spinal cord expression of zonula occluden-1 (ZO-1), matrix metalloproteinase-9 (MMP-9), and tumor necrosis factor-α (TNF-α) were measured by Western blot and a real-time polymerase chain reaction.
View Article and Find Full Text PDF