Publications by authors named "Xi'e Wang"

Endoplasmic reticulum (ER)-phagy is crucial to regulate the function and homeostasis of the ER via lysosomal degradation, but how it is initiated is unclear. Here we discover that Z-AAT, a disease-causing mutant of α1-antitrypsin, induces noncanonical ER-phagy at ER exit sites (ERESs). Accumulation of misfolded Z-AAT at the ERESs impairs coat protein complex II (COPII)-mediated ER-to-Golgi transport and retains V0 subunits that further assemble V-ATPase at the arrested ERESs.

View Article and Find Full Text PDF

Observation studies have postulated that atopic eczema is associated with a risk of inflammatory bowel disease in the East Asian population; however, this association does not obviate the biases resulting from confounding effects and reverse causation. This study aimed to determine whether this association is causal in the East Asian population using a bidirectional two-sample Mendelian randomization design. Independent genetic variants obtained from public genome-wide association studies for atopic eczema (4296 cases, 163 807 controls) were extracted to estimate the causal effects on inflammatory bowel disease (2824 cases, 3719 controls) and its two main conditions: Crohn's disease (1690 cases, 3719 controls) and ulcerative colitis (1134 cases, 3719 controls).

View Article and Find Full Text PDF

berry (Ningxia Gouqi, , goji berry, or wolfberry), as a traditional Chinese herb, was recorded beneficial for longevity in traditional Chinese medical scriptures and currently is a natural dietary supplement worldwide. However, under modern experimental conditions, the longevity effect of berry and the underlying mechanisms have been less studied. Here, we reported that total water extracts of berry (LBE), which contains 22% polysaccharides and other components, such as anthocyanins, extended the lifespan of without side effects on worm fertility and pharyngeal pumping.

View Article and Find Full Text PDF

Family with sequence similarity 20C (Fam20C), the major protein kinase in the secretory pathway, generates the vast majority of the secreted phosphoproteome. However, the regulatory mechanisms of Fam20C transport, secretion, and function remain largely unexplored. Here, we show that Fam20C exists as a type II transmembrane protein within the secretory compartments, with its N-terminal signal peptide-like region serving as a membrane anchor for Golgi retention.

View Article and Find Full Text PDF

Accumulated unfolded proteins in the endoplasmic reticulum (ER) trigger the unfolded protein response (UPR) to increase ER protein folding capacity. ER proteostasis and UPR signaling need to be regulated in a precise and timely manner. Here, we identify phosphorylation of protein disulfide isomerase (PDI), one of the most abundant and critical folding catalysts in the ER, as an early event during ER stress.

View Article and Find Full Text PDF

Background: Endoplasmic reticulum (ER) oxidoreductin-1α (Ero1α) and protein disulfide isomerase (PDI) constitute the pivotal pathway of oxidative protein folding, and are highly expressed in many cancers. However, whether targeting the functional interplay between Ero1α and PDI could be a new approach for cancer therapy remains unknown.

Methods: We performed wound healing assays, transwell migration and invasion assays and xenograft assays to assess cell migration, invasion and tumorigenesis; gel filtration chromatography, oxygen consumption assay and in cells folding assays were used to detect Ero1α-PDI interaction and Ero1α oxidase activity.

View Article and Find Full Text PDF

Family with sequence similarity 20C (Fam20C), the physiological Golgi casein kinase, phosphorylates numerous secreted proteins that are involved in a wide variety of biological processes. However, the role of Fam20C in regulating proteins in the endoplasmic reticulum (ER) lumen is largely unknown. Here, we report that Fam20C interacts with various luminal proteins and that its depletion results in a more reduced ER lumen.

View Article and Find Full Text PDF

Metformin, an FDA-approved antidiabetic drug, has been shown to elongate lifespan in animal models. Nevertheless, the effects of metformin on human cells remain unclear. Here, we show that low-dose metformin treatment extends the lifespan of human diploid fibroblasts and mesenchymal stem cells.

View Article and Find Full Text PDF

Background: The purpose of this meta-analysis is to compare the efficacy of tranexamic acid (TXA) versus placebo after a total shoulder arthroplasty (TSA).

Methods: In April 2017, a systematic computer-based search was conducted in the databases of PubMed, Embase, Web of Science, Cochrane Library, and Google. Studies comparing TXA versus placebo in reducing blood loss after TSA were included.

View Article and Find Full Text PDF

ERp44 controls the localization and transport of diverse proteins in the early secretory pathway. The mechanisms that allow client recognition and the source of the oxidative power for forming intermolecular disulfides are as yet unknown. Here we present the structure of ERp44 bound to a client, peroxiredoxin 4.

View Article and Find Full Text PDF

Protein-disulfide isomerase (PDI) and sulfhydryl oxidase endoplasmic reticulum oxidoreductin-1α (Ero1α) constitute the pivotal pathway for oxidative protein folding in the mammalian endoplasmic reticulum (ER). Ero1α oxidizes PDI to introduce disulfides into substrates, and PDI can feedback-regulate Ero1α activity. Here, we show the regulatory disulfide of Ero1α responds to the redox fluctuation in ER very sensitively, relying on the availability of redox active PDI.

View Article and Find Full Text PDF

Peroxiredoxin 4 (Prx4) is the only endoplasmic reticulum localized peroxiredoxin. It functions not only to eliminate peroxide but also to promote oxidative protein folding via oxidizing protein disulfide isomerase (PDI). In Prx4-mediated oxidative protein folding we discovered a new reaction that the sulfenic acid form of Prx4 can directly react with thiols in folding substrates, resulting in non-native disulfide cross-linking and aggregation.

View Article and Find Full Text PDF

Prx4 (peroxiredoxin 4) is the only peroxiredoxin located in the ER (endoplasmic reticulum) and a proposed scavenger for H2O2. In the present study, we solved crystal structures of human Prx4 in three different redox forms and characterized the reaction features of Prx4 with H2O2. Prx4 exhibits a toroid-shaped decamer constructed of five catalytic dimers.

View Article and Find Full Text PDF

Plasma membrane (PM) proteome is one of the major subproteomes present in the cell, and is very important in liver function. In the present work, C57 mouse liver PM was purified by density-gradient centrifugation. The purified PM was verified by electron microscope analysis and Western blotting.

View Article and Find Full Text PDF

Plasma membrane (PM) has very important roles in cell-cell interaction and signal transduction, and it has been extensively targeted for drug design. A major prerequisite for the analysis of PM proteome is the preparation of PM with high purity. Density gradient centrifugation has been commonly employed to isolate PM, but it often occurred with contamination of internal membrane.

View Article and Find Full Text PDF

To comprehensively identify proteins of liver plasma membrane (PM), we isolated PMs from mouse liver by sucrose density gradient centrifugation. An optimized extraction method for whole PM proteins and several methods of differential extraction expected to enrich hydrophobic membrane proteins were tested. The extracted PM proteins were separated by 2-DE, and were identified by MALDI-TOF-MS, and ESI-quadrupole-TOF MS.

View Article and Find Full Text PDF