The advantages of continuous chromatography with respect to increased capacity are well established. However, the impact of different loading scenarios and total number of columns on the process economics has not been addressed. Here four different continuous multicolumn chromatography (MCC) loading scenarios are evaluated for process performance and economics in the context of a Protein A mAb capture step.
View Article and Find Full Text PDFThe biopharmaceutical industry is evolving in response to changing market conditions, including increasing competition and growing pressures to reduce costs. Single-use (SU) technologies and continuous bioprocessing have attracted attention as potential facilitators of cost-optimized manufacturing for monoclonal antibodies. While disposable bioprocessing has been adopted at many scales of manufacturing, continuous bioprocessing has yet to reach the same level of implementation.
View Article and Find Full Text PDFThe goal of this study was to adapt a batch mAb purification chromatography platform for continuous operation. The experiments and rationale used to convert from batch to continuous operation are described. Experimental data was used to design chromatography methods for continuous operation that would exceed the threshold for critical quality attributes and minimize the consumables required as compared to batch mode of operation.
View Article and Find Full Text PDFA simple process development strategy for continuous capture multi-column chromatography (MCC) is described. The approach involves a few single column breakthrough experiments, based on several simplifying observations that enable users to rapidly convert batch processes into well-designed multi-column processes. The method was validated using a BioSMB(®) (Pall Life Sciences) lab scale multi-column system and a mAb capture process employing Protein A resin.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2014
Quantification of monoclonal antibody (mAb) monomer, mAb aggregates, and host cell proteins (HCPs) is critical for the optimization of the mAb production process. The present work describes a single high throughput analytical tool capable of tracking the concentration of mAb, mAb aggregate and HCPs in a growing cell culture batch. By combining two analytical HPLC methods, Protein A affinity and size-exclusion chromatography (SEC), it is possible to detect a relative increase or decrease in the concentration of all three entities simultaneously.
View Article and Find Full Text PDF