Myotubular myopathy is a rare disease of genetic origin characterized by significant muscle weakness leading to respiratory disorders and for which no treatment exists today. In this paper, we show that inhibition of the activity of the enzyme PI3KC2β prevents the development of this myopathy in a mouse model of the disease, thus identifying a therapeutic target to treat myotubular myopathy in humans.
View Article and Find Full Text PDFPhosphoinositides (PIs) are membrane lipids that regulate signal transduction and vesicular trafficking. X-linked centronuclear myopathy (XLCNM), also called myotubular myopathy, results from loss-of-function mutations in the MTM1 gene, which encodes the myotubularin phosphatidylinositol 3-phosphate (PtdIns3P) lipid phosphatase. No therapy for this disease is currently available.
View Article and Find Full Text PDFDynamin 2 mechanoenzyme is a key regulator of membrane remodeling and gain-of-function mutations in its gene cause centronuclear myopathies. Here, we investigate the functions of dynamin 2 isoforms and their associated phenotypes and, specifically, the ubiquitous and muscle-specific dynamin 2 isoforms expressed in skeletal muscle. In cell-based assays, we show that a centronuclear myopathy-related mutation in the ubiquitous but not the muscle-specific dynamin 2 isoform causes increased membrane fission.
View Article and Find Full Text PDFThe mechanoenzyme dynamin 2 (DNM2) is crucial for intracellular organization and trafficking. is mutated in dominant centronuclear myopathy (DNM2-CNM), a muscle disease characterized by defects in organelle positioning in myofibers. It remains unclear how the in vivo functions of DNM2 are regulated in muscle.
View Article and Find Full Text PDFOmics analyses are powerful methods to obtain an integrated view of complex biological processes, disease progression, or therapy efficiency. However, few studies have compared different disease forms and different therapy strategies to define the common molecular signatures representing the most significant implicated pathways. In this study, we used RNA sequencing and mass spectrometry to profile the transcriptomes and proteomes of mouse models for three forms of centronuclear myopathies (CNMs), untreated or treated with either a drug (tamoxifen), antisense oligonucleotides reducing the level of dynamin 2 (DNM2), or following modulation of DNM2 or amphiphysin 2 (BIN1) through genetic crosses.
View Article and Find Full Text PDFClassical dynamins are large GTPases regulating membrane and cytoskeleton dynamics, and they are linked to different pathological conditions ranging from neuromuscular diseases to encephalopathy and cancer. Dominant dynamin 2 (DNM2) mutations lead to either mild adult onset or severe autosomal dominant centronuclear myopathy (ADCNM). Our objectives were to better understand the pathomechanism of severe ADCNM and test a potential therapy.
View Article and Find Full Text PDFDynamin 2 (DNM2) is a ubiquitously expressed GTPase implicated in many cellular functions such as membrane trafficking and cytoskeleton regulation. Dominant mutations in DNM2 result in tissue-specific diseases affecting peripheral nerves (Charcot-Marie-Tooth neuropathy, CMT) or skeletal muscles (centronuclear myopathy, CNM). However, the reason for this tissue specificity is unknown, and it remains unclear if these diseases share a common pathomechanism.
View Article and Find Full Text PDFX-linked myotubular myopathy (XLMTM, also known as XLCNM) is a severe congenital muscular disorder due to mutations in the myotubularin gene, MTM1. It is characterized by generalized hypotonia, leading to neonatal death of most patients. No specific treatment exists.
View Article and Find Full Text PDFOne of the key research areas surrounding HIV-1 concerns the regulation of the fusion event that occurs between the virus particle and the host cell during entry. Even if it is universally accepted that the large GTPase dynamin-2 is important during HIV-1 entry, its exact role during the first steps of HIV-1 infection is not well characterized. Here, we have utilized a multidisciplinary approach to study the DNM2 role during fusion of HIV-1 in primary resting CD4 T and TZM-bl cells.
View Article and Find Full Text PDF