Publications by authors named "Xenia Filip"

The recently developed phenoplast-related polymer, poly(benzofuran--arylacetic acid), presents a versatile molecular structure containing lactone and carboxylic acid functionalities that offer significant flexibility in creating cured materials with tailored properties for diverse applications, wherein also the thermal conductivity is an important factor. This study analyses the possibility of forming amide moieties of poly(benzofuran--arylacetic acid) with diamines resulting in cross-linked products in order to control its thermal properties. The cross-linking process is achieved by utilizing three distinct diamines, 1,6-diaminohexane, -xylylenediamine, and 4,7,10-trioxa-1,13-tridecanediamine, each possessing different degrees of polarity, flexibility, and reactivity.

View Article and Find Full Text PDF

Finding efficient and environmental-friendly methods to produce and chemically modify cellulose nanofibers (CNFs) remains a challenge. In this study, lactic acid (LA) treatment followed by microfluidization was employed for the isolation and functionalization of CNFs. Small amounts of HCl (0.

View Article and Find Full Text PDF

The expansion of the construction industry requires large quantities of construction materials; therefore, the utilization of alternative raw materials that reduce the environmental impact and enhance the quality of the construction materials has received increasing interest. The comparative performance of 1% Dynamon SR3 or Dynamon SR41 superplasticizers on the properties of cement paste with 1 wt.% vine shoot waste addition (VSW) was investigated after 28 days using Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), and solid-state Al and Si nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

In this work, a systematic N/C solid-state NMR investigation is performed on three dopamine (DA) conjugates of hyaluronic acid, considered in both its native (HA) and NaIO-oxidized (HA) forms. Two of them, here named HA-DA and HA-DA, have been previously introduced as covalent conjugates involving DA amine nitrogen: the former by EDC-mediated amide bond formation, and the latter by reaction of the Schiff base with the aldehyde moieties presumed to exist in HA. The third conjugate, HA-DA, is reported here for the first time; it is obtained by simply mixing hyaluronan with DA∙HCl at pH 5.

View Article and Find Full Text PDF

Silica nanoparticles (SiO) are increasingly investigated for biomedical applications. This study aimed to analyze the potential use of a SiO nanoparticles coated with biocompatible polydopamine (SiO@PDA) as a potential chemotherapeutic drug carrier. SiO morphology and PDA adhesion was analyzed by dynamic light scattering, electron microscopy and nuclear magnetic resonance.

View Article and Find Full Text PDF

Worldwide, concerns about heavy metal contamination from manmade and natural sources have increased in recent decades. Metals released into the environment threaten human health, mostly due to their integration into the food chain and persistence. Nature offers a large range of materials with different functionalities, providing also a source of inspiration for scientists working in the field of material synthesis.

View Article and Find Full Text PDF

Fungal infections are a growing global health problem. Therefore, our group has synthetized and characterized an improved antimycotic by co-crystallization of ketoconazole and para-amino benzoic acid, named KET-PABA. The aim was to increase bioavailability, biocompatibility, and efficiency of the parent drug-ketoconazole.

View Article and Find Full Text PDF

Hydrogen atoms play a crucial role in the aggregation of organic (bio)molecules through diverse number of noncovalent interactions that they mediate, such as electrostatic in proton transfer systems, hydrogen bonding, and CH-π interactions, to mention only the most prominent. To identify and adequately describe such low-energy interactions, increasingly sensitive methods have been developed over time, among which quantum chemical computations have witnessed impressive advances in recent years. For reaching the present state-of-the-art, computations had to rely on a pool of relevant experimental data, needed at least for validation, if not also for other purposes.

View Article and Find Full Text PDF

The 1:1 cocrystal of the antifungal agent ketoconazole with -aminobenzoic acid was successfully crystallized and systematically characterized by a physical and pharmacological point of view. Crystal structure determination confirmed the cocrystal identity, giving full insight in its crystal packing and degree of disorder. Powder dissolution measurements revealed a 10-fold aqueous solubility increase that induces a 6.

View Article and Find Full Text PDF

Herein we report the preparation and solid state structural investigation of the 1,4-dioxane-quercetin solvate. NMR crystallography methods were employed for crystal structure determination of the solvate from microcrystalline powder. The stability of the compound relative to other reported quercetin solvates is discussed and found to be in perfect agreement with the hydrogen bonding networks/supra-molecular architectures formed in each case.

View Article and Find Full Text PDF

Similarly to synthetic drugs, the exact crystalline form of active ingredients in solid formulations of dietary supplements may directly influence the dissolution rate, bioavailability, and stability of the final product, but this information is usually not provided by manufacturers. Working on the examples of two commercial quercetin dietary supplements a quick, reliable, and sensitive method is introduced for quercetin solid forms discrimination directly on the marketed products, without the need for prior sample preparation. It exploits the complementarity between solid-state Nuclear Magnetic Resonance (ss-NMR) and Powder X-Ray Diffraction (PXRD), which proved essential for performing a complete and accurate solid-state characterization of the two commercial products, and for obtaining new insights into the complex quercetin solid-forms landscape.

View Article and Find Full Text PDF

Graphene-oxide (GO) and its most encountered derivatives, thermally reduced graphene oxide (TRGO) and nitrogen-doped graphene (N-Gr), were synthesized and structurally characterized by spectroscopic techniques, like Raman and (13)C MAS solid state NMR. Several biological effects (cytotoxicity, oxidative stress induction, and cellular and mithocondrial membrane alterations) induced by such graphene-based materials on human dental follicle stem cells were investigated. Graphene oxide shows the lowest cytotoxic effect, followed by the nitrogen-doped graphene, while thermally reduced graphene oxide exhibits high cytotoxic effects.

View Article and Find Full Text PDF

Crystal structures of Tadalafil (TDF) monosolvated forms with acetone (ACE) and methyl ethyl ketone (MEK) were determined by single-crystal X-ray diffraction in which same persistent chains of TDF molecules are present as in the reported structures. The solvates crystallize in a higher orthorhombic symmetry than the known forms with monoclinic structures. Weak interactions between TDF and solvent molecules are present in both solvates, leading to slight conformational distortions of TDF molecules.

View Article and Find Full Text PDF

Hydrogen atoms in systems with many flexible hydroxyl side-groups are difficult to be exactly located from experimental X-Ray diffraction and/or solid-state NMR data, thus often leading to wrong conclusions with respect to the hydrogen bonding network established in crystal lattice. A simple computational method is proposed in the present work to tackle this problem, which may be readily incorporated in conventional NMR crystallography protocols. The method is based on ranking all possible conformations of the flexible hydroxyls according to their lattice energy in crystalline environments.

View Article and Find Full Text PDF

A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns.

View Article and Find Full Text PDF

The crystal structure solution of the title compound is determined from microcrystalline powder using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct-space methods with information from (13)C solid-state NMR (SSNMR), and molecular modelling using the GIPAW (gauge including projector augmented-wave) method. The space group is Pbca with one molecule in the asymmetric unit. The proposed methodology proves very useful for unambiguously characterizing the supramolecular arrangement adopted by the N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide molecules in the crystal, which consists of extended double strands held together by C-H···π non-covalent interactions.

View Article and Find Full Text PDF

A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products.

View Article and Find Full Text PDF

A protocol is presented for correcting the effect of non-specific cross-polarization in CHHC solid-state MAS NMR experiments, thus allowing the recovery of the (1)H-(1)H magnetization exchange functions from the mixing-time dependent buildup of experimental CHHC peak intensity. The presented protocol also incorporates a scaling procedure to take into account the effect of multiplicity of a CH(2) or CH(3) moiety. Experimental CHHC buildup curves are presented for l-tyrosine.

View Article and Find Full Text PDF

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.

View Article and Find Full Text PDF

An experimental procedure for CP/MAS polarization transfer from remote 1H nuclear spins is introduced, which is applicable to protonated carbons in organic solids. It is based on preparing a state of non-uniform polarization, where directly bonded 13C-1H nuclei are de-polarized prior to recording the CP buildup curve. This curve is then expected to quantify the polarization transfer from remote protons only.

View Article and Find Full Text PDF

A new heteronuclear decoupling mechanism under fast magic-angle spinning MAS is introduced. It is based on refocusing the coherences responsible for the dephase of low-gamma nuclei ((13)C, (15)N) transverse spin-polarization in the presence of strongly dipolar-coupled protons, and has the advantage that can be implemented by pulsed techniques, with all the benefits resulting from a reduced duty cycle compared with conventional decoupling by continuous rf irradiation. The decoupling efficiency of a simple rotor-synchronized Hahn-echo pulse train is analyzed both theoretically and experimentally.

View Article and Find Full Text PDF