Publications by authors named "Xenia Davis"

Treatment with the toll-like receptor (TLR) 4 agonist monophosphoryl lipid A (MPLA) conditions innate immunocytes to respond robustly to subsequent infection, a phenotype termed innate immune memory. Our published studies show that metabolic reprogramming of macrophages is a prominent feature of the memory phenotype. We undertook studies to define the functional contributions of tricarboxylic acid (TCA) cycle reprogramming to innate immune memory.

View Article and Find Full Text PDF

Different stimuli can induce innate immune memory to improve pathogen defense or worsen cardiometabolic disease. However, it is less clear if the same stimuli can induce both the protective and detrimental effects of innate immune memory. We previously showed that weight loss induces innate immune memory in adipose macrophages that correlates with worsened diabetes risk after weight regain.

View Article and Find Full Text PDF
Article Synopsis
  • The August 2023 article in Science Signaling critiques the traditional macrophage classifications (M1/M2) by showing how transforming growth factor β (TGF-β) alters macrophage metabolism and function, leading to an unexpected phenotype.
  • TGF-β-treated macrophages increase glycolysis, decrease pro-inflammatory cytokines, and elevate coagulation factors, indicating a complex role in inflammation and metabolism during conditions like sepsis.
  • The study connects TGF-β's effects to COVID-19, showing similar metabolic changes in macrophages and suggesting that targeting TGF-β could be a therapeutic strategy for diseases characterized by uncontrolled inflammation and coagulation issues.
View Article and Find Full Text PDF

Introduction: Sepsis is a dysregulated host response to infection that can lead to life-threatening organ dysfunction. Clinical and animal studies consistently demonstrate that female subjects are less susceptible to the adverse effects of sepsis, demonstrating the importance of understanding how sex influences sepsis outcomes. The signal transducer and activator of transcription 3 (STAT3) pathway are a major signaling pathway that facilitates inflammation during sepsis.

View Article and Find Full Text PDF

Sepsis is a dysregulated systemic response to infection and can lead to organ damage and death. Obesity is a significant problem worldwide and affects outcomes from sepsis. Our laboratory demonstrated that white adipose tissue (WAT) undergoes browning during sepsis, a process whereby WAT adopts a brown adipose tissue phenotype.

View Article and Find Full Text PDF

APOA5 is a low-abundance exchangeable apolipoprotein that plays critical roles in human triglyceride (TG) metabolism. Indeed, aberrations in the plasma concentration or structure of APOA5 are linked to hypertriglyceridemia, hyperchylomicronemia, myocardial infarction risk, obesity, and coronary artery disease. While it has been successfully produced at low yield in bacteria, the resulting protein had limitations for structure-function studies due to its low solubility under physiological buffer conditions.

View Article and Find Full Text PDF

Objective: Dietary triglycerides are partially retained in the intestine within intracellular or extracellular compartments, which can be rapidly mobilized in response to several stimuli, including glucose and GLP-2 (glucagon-like peptide-2). To elucidate the mechanism of intestinal lipid mobilization, this study examined the patterns and time course of lymph flow and triglycerides after glucose and GLP-2 treatment in rats. Approach and Results: Lymph flow, triglyceride concentration, and triglyceride output were assessed in mesenteric lymph duct-cannulated rats in response to an intraduodenal (i.

View Article and Find Full Text PDF

Background: Recent studies have demonstrated that Th2 responses have the ability to antagonize Th17 responses. In mouse models of allergic asthma, blockade of Th2-effector cytokines results in elaboration of Th17 responses and associated increases in pulmonary neutrophilia. While these can be controlled by simultaneous blockade of Th17-associated effector cytokines, clinical trials of anti-IL-17/IL-17RA blocking therapies have demonstrated increased of risk of bacterial and fungal infections.

View Article and Find Full Text PDF