Publications by authors named "Xenariou S"

The cationic lipid GL67A is one of the more efficient non-viral gene transfer agents (GTAs) for the lungs, and is currently being evaluated in an extensive clinical trial programme for cystic fibrosis gene therapy. Despite conferring significant expression of vector-specific mRNA following transfection of differentiated human airway cells cultured on air liquid interfaces (ALI) cultures and nebulisation into sheep lung in vivo we were unable to detect robust levels of the standard reporter gene Firefly luciferase (FLuc). Recently a novel secreted luciferase isolated from Gaussia princeps (GLuc) has been described.

View Article and Find Full Text PDF

Gene therapy for cystic fibrosis (CF) is making encouraging progress into clinical trials. However, further improvements in transduction efficiency are desired. To develop a novel gene transfer vector that is improved and truly effective for CF gene therapy, a simian immunodeficiency virus (SIV) was pseudotyped with envelope proteins from Sendai virus (SeV), which is known to efficiently transduce unconditioned airway epithelial cells from the apical side.

View Article and Find Full Text PDF

The aim of the study was to assess if low-frequency ultrasound (US), in the range of 30-35 kHz, increases non-viral gene transfer to the mouse lung. US is greatly attenuated in the lung due to large energy losses at the air/tissue interfaces. The advantages of low-frequency US, compared with high-frequency US are: (i) increased cavitation (responsible for the formation of transient pores in the cell membrane) and (ii) reduced energy losses during lung penetration.

View Article and Find Full Text PDF

Import of exogenous plasmid DNA (pDNA) into mammalian cell nuclei represents a key intracellular obstacle to efficient non-viral gene delivery. This includes access of the pDNA to the nuclei of non-dividing cells where the presence of an intact nuclear membrane is limiting for gene transfer. Here we identify, isolate, and characterize, cytoplasmic determinants of pDNA nuclear import into digitonin-permeabilized HeLa cells.

View Article and Find Full Text PDF

Magnetic nanoparticle-based gene transfection has been shown to be effective in combination with both viral vectors and with non-viral agents. In these systems, therapeutic or reporter genes are attached to magnetic nanoparticles which are then focused to the target site/cells via high-field/high-gradient magnets. The technique has been shown to be efficient and rapid for in vitro transfection and compares well with cationic lipid-based reagents, producing good overall transfection levels with lower doses and shorter transfection times.

View Article and Find Full Text PDF

We have assessed if high-frequency ultrasound (US) can enhance nonviral gene transfer to the mouse lung. Cationic lipid GL67/pDNA, polyethylenimine (PEI)/pDNA and naked plasmid DNA (pDNA) were delivered via intranasal instillation, mixed with Optison microbubbles, and the animals were then exposed to 1 MHz US. Addition of Optison alone significantly reduced the transfection efficiency of all three gene transfer agents.

View Article and Find Full Text PDF

We have assessed whether magnetic forces (magnetofection) can enhance non-viral gene transfer to the airways. TransMAG(PEI), a superparamagnetic particle was coupled to Lipofectamine 2000 or cationic lipid 67 (GL67)/plasmid DNA (pDNA) liposome complexes. In vitro transfection with these formulations resulted in approximately 300- and 30-fold increase in reporter gene expression, respectively, after exposure to a magnetic field, but only at suboptimal pDNA concentrations.

View Article and Find Full Text PDF
Article Synopsis
  • A new method has been developed to attach fluorescent markers (fluorochromes) specifically to supercoiled plasmid DNA (pDNA), which is crucial for tracking pDNA in cells without disrupting gene expression.
  • This method uses peptide nucleic acid (PNA) as a linker, connecting the fluorochrome to pDNA by covalently reacting a part of the PNA with the fluorochrome, enabling visualization through fluorescence.
  • Experiments demonstrated that the conjugate successfully entered cell nuclei and retained a significant level of its original gene expression activity, making it a valuable tool for studies on gene transfer and DNA tracking in live cells.
View Article and Find Full Text PDF