Background: Lysins (cell wall hydrolases) targeting gram-negative organisms require engineering to permeabilize the outer membrane and access subjacent peptidoglycan to facilitate killing. In the current study, the potential clinical utility for the engineered lysin CF-370 was examined in vitro and in vivo against gram-negative pathogens important in human infections.
Methods: Minimum inhibitory concentration (MICs) and bactericidal activity were determined using standard methods.
Lysins (peptidoglycan hydrolases) are promising new protein-based antimicrobial candidates under development to address rising antibiotic resistance encountered among pathogenic bacteria. Exebacase is an antistaphylococcal lysin and the first member of the lysin class to have entered clinical trials in the United States. In this study, the bacteriolytic activity of exebacase was characterized with time-kill assays, turbidity reduction assays, and microscopy.
View Article and Find Full Text PDFDirect lytic agents (DLAs) are novel antimicrobial compounds with unique mechanisms of action based on rapid cell wall destabilization and bacteriolysis. DLAs include two classes of purified polypeptides-lysins (peptidoglycan hydrolase enzymes) and amurins (outer membrane targeting peptides). Their intended use is to kill bacteria in a manner that is complimentary to and synergistic with traditional antibiotics without selection for DLA resistance.
View Article and Find Full Text PDFBacterial natural products have inspired the development of numerous antibiotics in use today. As resistance to existing antibiotics has become more prevalent, new antibiotic lead structures and activities are desperately needed. An increasing number of natural product biosynthetic gene clusters, to which no known molecules can be assigned, are found in genome and metagenome sequencing data.
View Article and Find Full Text PDFBioinformatic analysis of sequenced bacterial genomes has uncovered an increasing number of natural product biosynthetic gene clusters (BGCs) to which no known bacterial metabolite can be ascribed. One emerging method we have investigated for studying these BGCs is the synthetic-Bioinformatic Natural Product (syn-BNP) approach. The syn-BNP approach replaces transcription, translation, and enzymatic biosynthesis of natural products with bioinformatic algorithms to predict the output of a BGC and chemical synthesis to produce the predicted structure.
View Article and Find Full Text PDFObjectives: Preventing bacterial contact with host cells can provide an additional approach to tackling MDR Acinetobacter baumannii. Recently, we identified AOA-2 as a potential blocker of A. baumannii outer membrane protein A without presenting bactericidal activity.
View Article and Find Full Text PDFThe antibiotic paenimucillin A was originally identified using a culture-independent synthetic-bioinformatic natural product (syn-BNP) discovery approach. Here we report on a bioinformatics-guided survey of paenimucillin A analogs that led to the discovery of paenimucillin C. Paenimucillin C inhibits the growth of multidrug-resistant (MDR) clinical isolates, as well as other Gram-negative bacterial pathogens.
View Article and Find Full Text PDFPreventing the adhesion of pathogens to host cells provides an innovative approach to tackling multidrug-resistant bacteria. In this regard, the identification of outer membrane protein A (OmpA) as a key bacterial virulence factor has been a major breakthrough. The use of virtual screening helped us to identify a cyclic hexapeptide AOA-2 that inhibits the adhesion of Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli to host cells and the formation of biofilm, thereby preventing the development of infection in vitro and in a murine sepsis peritoneal model.
View Article and Find Full Text PDFCommensal bacteria are believed to have important roles in human health. The mechanisms by which they affect mammalian physiology remain poorly understood, but bacterial metabolites are likely to be key components of host interactions. Here we use bioinformatics and synthetic biology to mine the human microbiota for N-acyl amides that interact with G-protein-coupled receptors (GPCRs).
View Article and Find Full Text PDFThe flippase MurJ is responsible for transporting the cell wall intermediate lipid II from the cytoplasm to the outside of the cell. While essential for the survival of bacteria, it remains an underexploited target for antibacterial therapy. The humimycin antibiotics are lipid II flippase (MurJ) inhibitors that were synthesized on the basis of bioinformatic predictions derived from secondary metabolite gene clusters found in the human microbiome.
View Article and Find Full Text PDFBacterial culture broth extracts have been the starting point for the development of numerous therapeutics. However, only a small fraction of bacterial biosynthetic diversity is accessible using this strategy. Here, we apply a discovery approach that bypasses the culturing step entirely by bioinformatically predicting small molecule structures from the primary sequences of the biosynthetic gene clusters.
View Article and Find Full Text PDFHere we present a natural product discovery approach, whereby structures are bioinformatically predicted from primary sequence and produced by chemical synthesis (synthetic-bioinformatic natural products, syn-BNPs), circumventing the need for bacterial culture and gene expression. When we applied the approach to nonribosomal peptide synthetase gene clusters from human-associated bacteria, we identified the humimycins. These antibiotics inhibit lipid II flippase and potentiate β-lactam activity against methicillin-resistant Staphylococcus aureus in mice, potentially providing a new treatment regimen.
View Article and Find Full Text PDFThis study was undertaken to characterize functions of the outer membrane protein OmpW, which potentially contributes to the development of colistin- and imipenem-resistance in Acinetobacter baumannii. Reconstitution of OmpW in artificial lipid bilayers showed that it forms small channels (23 pS in 1 m KCl) and markedly interacts with iron and colistin, but not with imipenem. In vivo, (55) Fe uptake assays comparing the behaviours of ΔompW mutant and wild-type strains confirmed a role for OmpW in A.
View Article and Find Full Text PDFIn the last decade the number of Acinetobacter baumannii and Pseudomonas aeruginosa isolates showing extended drug resistance and pandrug resistance has steadily increased, thereby limiting or eliminating the antibiotics that can be used to treat infections by these micro-organisms. In addition, few antibiotics have been launched in the last decade. The objective of this study was to investigate the in vitro activity of several ceragenins against A.
View Article and Find Full Text PDFObjectives: Acinetobacter nosocomialis has increasingly been reported as an opportunistic pathogen causing nosocomial infections. Although it is more susceptible to all antimicrobial agents than Acinetobacter baumannii, MDR clinical isolates have also been described. In addition, several studies have shown a high percentage of resistance to colistin.
View Article and Find Full Text PDFThe treatment of some infectious diseases can currently be very challenging since the spread of multi-, extended- or pan-resistant bacteria has considerably increased over time. On the other hand, the number of new antibiotics approved by the FDA has decreased drastically over the last 30 years. The main objective of this study was to investigate the activity of wasp peptides, specifically mastoparan and some of its derivatives against extended-resistant Acinetobacter baumannii.
View Article and Find Full Text PDFBacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development.
View Article and Find Full Text PDFMambalgins are a novel class of snake venom components that exert potent analgesic effects mediated through the inhibition of acid-sensing ion channels (ASICs). The 57-residue polypeptide mambalgin-2 (Ma-2) was synthesized by using a combination of solid-phase peptide synthesis and native chemical ligation. The structure of the synthetic toxin, determined using homonuclear NMR, revealed an unusual three-finger toxin fold reminiscent of functionally unrelated snake toxins.
View Article and Find Full Text PDFThe synthesis of proteins by native chemical ligation greatly enhances the application of chemistry to complex molecules such as proteins. The essential building blocks for this approach traditionally have been peptide-thioester segments that are linked chemoselectively in consecutive reactions. By using peptide selenoesters instead of thioesters, the ligation rate can be significantly accelerated permitting couplings at difficult sites and potentially enabling new ligation strategies.
View Article and Find Full Text PDFThe development of high-level daptomycin resistance (HLDR; MIC of ≥ 256 mg/liter) after exposure to daptomycin has recently been reported in viridans group streptococcus (VGS) isolates. Our study objectives were as follows: to know whether in vitro development of HLDR after exposure to daptomycin was common among clinical isolates of VGS and Streptococcus bovis; to determine whether HLDR also developed during the administration of daptomycin to treat experimental endocarditis caused by the daptomycin-susceptible, penicillin-resistant Streptococcus mitis strain S. mitis 351; and to establish whether combination with gentamicin prevented the development of HLDR in vitro and in vivo.
View Article and Find Full Text PDFDuring the past few decades Acinetobacter baumannii has evolved from being a commensal dweller of health-care facilities to constitute one of the most annoying pathogens responsible for hospitalary outbreaks and it is currently considered one of the most important nosocomial pathogens. In a prevalence study of infections in intensive care units conducted among 75 countries of the five continents, this microorganism was found to be the fifth most common pathogen. Two main features contribute to the success of A.
View Article and Find Full Text PDFThe emergence of Acinetobacter sp. strains resistant to all antibacterial agents including colistin necessitates the development of new types of antimicrobial agents. Six cationic α-helical frog skin-derived peptides (CPF-AM1, PGLa-AM1, B2RP-ERa, [E4K]alyteserin-1c, [D4K]B2RP and [G4K]XT-7) were selected for this study on the basis of potent growth-inhibitory activity against Gram-negative bacteria and low haemolytic activity against human erythrocytes.
View Article and Find Full Text PDF