Publications by authors named "Xavier Thibert-Plante"

Modern speciation theory has greatly benefited from a variety of simple mathematical models focusing on the conditions and patterns of speciation and diversification in the presence of gene flow. Unfortunately the application of general theoretical concepts and tools to specific ecological systems remains a challenge. Here we apply modeling tools to better understand adaptive divergence of whitefish during the postglacial period in lakes of northern Fennoscandia.

View Article and Find Full Text PDF

Speciation is the process that generates biodiversity, but recent empirical findings show that it can also fail, leading to the collapse of two incipient species into one. Here, we elucidate the mechanisms behind speciation collapse using a stochastic individual-based model with explicit genetics. We investigate the impact of two types of environmental disturbance: deteriorated visual conditions, which reduce foraging ability and impede mate choice, and environmental homogenization, which restructures ecological niches.

View Article and Find Full Text PDF

Background: Over the last 300 years, interactions between alewives and zooplankton communities in several lakes in the U.S. have caused the alewives' morphology to transition rapidly from anadromous to landlocked.

View Article and Find Full Text PDF

Phenotypic plasticity is the ability of one genotype to produce different phenotypes depending on environmental conditions. Several conceptual models emphasize the role of plasticity in promoting reproductive isolation and, ultimately, speciation in populations that forage on two or more resources. These models predict that plasticity plays a critical role in the early stages of speciation, prior to genetic divergence, by facilitating fast phenotypic divergence.

View Article and Find Full Text PDF

Non-random mating provides multiple evolutionary benefits and can result in speciation. Biological organisms are characterised by a myriad of different traits, many of which can serve as mating cues. We consider multiple mechanisms of non-random mating simultaneously within a unified modelling framework in an attempt to understand better which are more likely to evolve in natural populations going through the process of local adaptation and ecological speciation.

View Article and Find Full Text PDF

It is not yet clear under what conditions empirical studies can reliably detect progress toward ecological speciation through the analysis of allelic variation at neutral loci. We use a simulation approach to investigate the range of parameter space under which such detection is, and is not, likely. We specifically test for the conditions under which divergent natural selection can cause a 'generalized barrier to gene flow' that is present across the genome.

View Article and Find Full Text PDF

We here employ 11 microsatellite markers and recently developed litter reconstruction methods to infer mating system parameters (i.e. polyandry and breeding-site fidelity) at a lemon shark nursery site in Marquesas Key, Florida.

View Article and Find Full Text PDF

We examine the role played by crossover in a series of genetic algorithm-based evolutionary simulations of the iterated prisoner's dilemma. The simulations are characterized by extended periods of stability, during which evolutionarily meta-stable strategies remain more or less fixed in the population, interrupted by transient, unstable episodes triggered by the appearance of adaptively targeted predators. This leads to a global evolutionary pattern whereby the population shifts from one of a few evolutionarily metastable strategies to another to evade emerging predator strategies.

View Article and Find Full Text PDF