Publications by authors named "Xavier Reboud"

This article presents data on farming operations traceability and associated performances, for winegrowing systems with low phytosanitary inputs. 343 farms were sampled from the DEPHY network: a governmental initiative to produce references on phytosanitary-efficient cropping systems under real conditions of production. Data were collected every campaign between 2017 and 2020, by multiple extensionists who provide support to the voluntarily enlisted growers, in exchange for traceability of their practices and their commitment to reducing pesticide use.

View Article and Find Full Text PDF

A new 5-year Common Agricultural Policy has been in place since January 2023. Like its predecessors, this new policy will fail to deliver significant climatic and environmental benefits. We show how the Green Architecture of the policy relying on the three instruments of conditionality, eco-schemes, and agri-environment and climate measures could have been used more consistently and effectively.

View Article and Find Full Text PDF

A profound transformation of agricultural production methods has become unavoidable due to the increase in the world's population, and environmental and climatic challenges. Agroecology is now recognized as a challenging model for agricultural systems, promoting their diversification and adaptation to environmental and socio-economic contexts, with consequences for the entire agri-food system and the development of rural and urban areas. Through a prospective exercise performed at a large interdisciplinary institute, INRAE, a research agenda for agroecology was built that filled a gap through its ambition and interdisciplinarity.

View Article and Find Full Text PDF

Conventional pest management mainly relies on the use of pesticides. However, the negative externalities of pesticides are now well known. More sustainable practices, such as Integrated Pest Management, are necessary to limit crop damage from pathogens, pests and weeds in agroecosystems.

View Article and Find Full Text PDF

A major aim in invasion biology is identifying traits distinguishing alien invasive and alien non-invasive plants. Surprisingly, this approach has been, so far, poorly used to understand why some arable weeds are abundant and widespread while others are rare and narrowly distributed. In the present study, we focused on the characteristics of successful weeds occurring in maize fields, one of the most important crops worldwide.

View Article and Find Full Text PDF

Certain amino acids induce inhibitory effects in plant growth due to feedback inhibition of metabolic pathways. The inhibition patterns depend on plant species and the plant developmental stage. Those amino acids with inhibitory action on specific weeds could be utilized as herbicides, however, their use for weed control has not been put into practice.

View Article and Find Full Text PDF

Broomrapes are plant-parasitic weeds which constitute one of the most difficult-to-control of all biotic constraints that affect crops in Mediterranean, central and eastern Europe, and Asia. Due to their physical and metabolic overlap with the crop, their underground parasitism, their achlorophyllous nature, and hardly destructible seed bank, broomrape weeds are usually not controlled by management strategies designed for non-parasitic weeds. Instead, broomrapes are in current state of intensification and spread due to lack of broomrape-specific control programs, unconscious introduction to new areas and may be decline of herbicide use and global warming to a lesser degree.

View Article and Find Full Text PDF

Predicting the population dynamics of annual plants is a challenge due to their hidden seed banks in the field. However, such predictions are highly valuable for determining management strategies, specifically in agricultural landscapes. In agroecosystems, most weed seeds survive during unfavourable seasons and persist for several years in the seed bank.

View Article and Find Full Text PDF

Background: Theory in ecology points out the potential link between the degree of specialisation of organisms and their responses to disturbances and suggests that this could be a key element for understanding the assembly of communities. We evaluated this question for the arable weed flora as this group has scarcely been the focus of ecological studies so far and because weeds are restricted to habitats characterised by very high degrees of disturbance. As such, weeds offer a case study to ask how specialization relates to abundance and distribution of species in relation to the varying disturbance regimes occurring in arable crops.

View Article and Find Full Text PDF

Background: Herbicide mixtures are commonly proposed to delay the selection of herbicide resistance in susceptible populations (called the SM strategy). However, in practice, herbicide mixtures are often used when resistance to one of the two active ingredients has already been detected in the targeted population (called the RM strategy). It is doubtful whether such a practice can select against resistance, as the corresponding selection pressure is still exerted.

View Article and Find Full Text PDF

Background: Environmental heterogeneity in space or time can drive the evolutionary trajectory of an adaptive trait. This concept could be of practical significance in pesticide resistance management that aims to delay the evolution of a resistance allele. Using a population genetics model, the dynamics of herbicide resistance in a weed species was simulated in a heterogeneous environment with alternation of two unrelated herbicides in time, in space or in both time and space.

View Article and Find Full Text PDF

The existence of a large-scale population structure was investigated in Arabidopsis thaliana by studying patterns of polymorphism in a set of 71 European accessions. We used sequence polymorphism surveyed in 10 fragments of approximately 600 nucleotides and a set of nine microsatellite markers. Population structure was investigated using a model-based inference framework.

View Article and Find Full Text PDF

Various management strategies aim at maintaining pesticide resistance frequency under a threshold value by taking advantage of the benefit of the fitness penalty (the cost) expressed by the resistance allele outside the treated area or during the pesticide selection "off years." One method to estimate a fitness cost is to analyze the resistance allele frequency along transects across treated and untreated areas. On the basis of the shape of the cline, this method gives the relative contributions of both gene flow and the fitness difference between genotypes in the treated and untreated areas.

View Article and Find Full Text PDF

The application of high-throughput SNP genotyping is a great challenge for many research projects in the plant genetics domain. The GOOD assay for mass spectrometry, Amplifluor and TaqMan are three methods that rely on different principles for allele discrimination and detection, specifically, primer extension, allele-specific PCR and hybridization, respectively. First, with the goal of assessing allele frequencies by means of SNP genotyping, we compared these methods on a set of three SNPs present in the herbicide resistance genes CSR, AXR1 and IXR1 of Arabidopsis thaliana.

View Article and Find Full Text PDF

The evolution of resistance in response to pesticide selection is expected to be delayed if fitness costs are associated with resistance genes. The estimate of fitness costs usually involves comparing major growth traits of resistant versus susceptible individuals in the absence of pesticide. Ideally, a measure of changes in resistance allele frequency over several generations would allow the best estimate of the overall fitness cost of a resistance gene.

View Article and Find Full Text PDF

We investigated the occurrence of tolerance to atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) in soil microalgae by means of the pollution-induced community tolerance methodology. To this end, a natural soil assemblage of microalgae, reared under laboratory conditions, was used as experimental model. Experimental cultures were exposed to 0.

View Article and Find Full Text PDF

A mutation endowing herbicide resistance is often found to induce a parallel morphological or fitness penalty. To test whether such 'cost' of resistance to herbicides is expressed through lower resource acquisition, changes in resource allocation, or both, is of ecological significance. Here, we analysed 12 morphological traits in 900 plants covering three herbicide resistance mutations at genes AUX1 , AXR1 and AXR2 in the model species Arabidopsis thaliana .

View Article and Find Full Text PDF

The type of interactions among deleterious mutations is considered to be crucial in numerous areas of evolutionary biology, including the evolution of sex and recombination, the evolution of ploidy, the evolution of selfing, and the conservation of small populations. Because the herbicide resistance genes could be viewed as slightly deleterious mutations in the absence of the pesticide selection pressure, the epistatic interactions among three herbicide resistance genes (acetolactate synthase CSR, cellulose synthase IXR1, and auxin-induced AXR1 target genes) were estimated in both the homozygous and the heterozygous states, giving 27 genotype combinations in the model plant Arabidopsis thaliana. By analyzing eight quantitative traits in a segregating population for the three herbicide resistances in the absence of herbicide, we found that most interactions in both the homozygous and the heterozygous states were best explained by multiplicative effects (each additional resistance gene causes a comparable reduction in fitness) rather than by synergistic effects (each additional resistance gene causes a disproportionate fitness reduction).

View Article and Find Full Text PDF

Dominance of a resistance trait can be defined as a measure of the relative position of the phenotype of the heterozygote RS compared with the phenotype of the two corresponding homozygotes, SS and RR. This parameter has been shown to have primary importance in the dynamics of pesticide resistance evolution. Literature on insecticide resistance suggests that dominance levels in the presence of insecticide vary greatly from completely recessive to completely dominant.

View Article and Find Full Text PDF

The successful exploitation of natural genetic diversity requires a basic knowledge of the extent of the variation present in a species. To study natural variation in Arabidopsis thaliana, we defined nested core collections maximizing the diversity present among a worldwide set of 265 accessions. The core collections were generated based on DNA sequence data from a limited number of fragments evenly distributed in the genome and were shown to successfully capture the molecular diversity in other loci as well as the morphological diversity.

View Article and Find Full Text PDF

Resistance evolution depends upon the balance between advantage and disadvantage (cost) conferred in treated and untreated areas. By analyzing morphological characters and simple fitness components, the cost associated with each of eight herbicide resistance alleles (acetolactate synthase, cellulose synthase, and auxin-induced target genes) was studied in the model plant Arabidopsis thaliana. The use of allele-specific PCR to discriminate between heterozygous and homozygous plants was used to provide insights into the dominance of the resistance cost, a parameter rarely described.

View Article and Find Full Text PDF

FRIGIDA (FRI) is a major gene involved in the regulation of flowering time in Arabidopsis thaliana. Nucleotide variation at this gene was investigated by sequencing 25 field ecotypes collected from western Europe. Genetic diversity at FRI was characterized by a high number of haplotypes and an excess of low-frequency polymorphisms.

View Article and Find Full Text PDF