In recent decades, subcutaneous (SC) administration of monoclonal antibodies (mAbs) has emerged as a promising alternative to intravenous delivery in oncology, offering comparable therapeutic efficacy while addressing patient preferences. This perspective article provides an in-depth analysis of the technological landscape surrounding SC mAb administration in oncology. It outlines various technologies under evaluation across developmental stages, spanning from preclinical investigations to the integration of established methodologies in clinical practice.
View Article and Find Full Text PDFIntroduction: This study investigated the magnitude and etiology of neuromuscular fatigue and muscle damage induced by eccentric cycling compared with conventional concentric cycling in patients with breast cancer.
Methods: After a gradual familiarization protocol for eccentric cycling, nine patients with early-stage breast cancer performed three cycling sessions in eccentric or concentric mode. The eccentric cycling session (ECC) was compared with concentric cycling sessions matched for power output (CON power ; 80% of concentric peak power output, 95 ± 23 W) or oxygen uptake ( ; 10 ± 2 mL·min·kg -1 ).
Background: The effectiveness and safety of pyrotinib have been substantiated in human epidermal growth factor receptor 2 (HER2)-positive advanced breast cancer (BC). However, the role of pyrotinib as a single HER2 blockade in neoadjuvant setting among BC patients has not been studied. The objective of this study was to evaluate the efficacy and tolerability of pyrotinib plus taxanes as a novel neoadjuvant regimen in patients with HER2-positive early or locally advanced BC.
View Article and Find Full Text PDFNanoparticle (NP) surface functionalization with proteins, including monoclonal antibodies (mAbs), mAb fragments, and various peptides, has emerged as a promising strategy to enhance tumor targeting specificity and immune cell interaction. However, these methods often rely on complex chemistry and suffer from batch-dependent outcomes, primarily due to limited control over the protein orientation and quantity on NP surfaces. To address these challenges, a novel approach based on the supramolecular assembly of two peptides is presented to create a heterotetramer displaying VHs on NP surfaces.
View Article and Find Full Text PDFSubcutaneous (SC) administration of monoclonal antibodies (mAbs) is a proven strategy for improving therapeutic outcomes and patient compliance. The current FDA-/EMA-approved enzymatic approach, utilizing recombinant human hyaluronidase (rHuPH20) to enhance mAbs SC delivery, involves degrading the extracellular matrix's hyaluronate to increase tissue permeability. However, this method lacks tunable release properties, requiring individual optimization for each mAb.
View Article and Find Full Text PDFPneumatic transportation systems (PTS) were recently proposed as a method to carry ready-for-injection diluted monoclonal antibodies (mAbs) from the pharmacy to the bedside of patients. This method reduces transportation time and improves the efficiency of drug distribution process. However, mAbs are highly sensitive molecules for which subtle alterations may lead to deleterious clinical effects.
View Article and Find Full Text PDFIntroduction: The subcutaneous (H-SC) formulation of trastuzumab was demonstrated to be as effective and safe as intravenous (H-IV) and highly preferred by patients in early breast cancer. The present randomized MetaspHER trial (NCT01810393) has been the first study assessing patient's preference in metastatic setting and we report the final analysis with long term follow-up.
Methods: Patients with HER2-positive metastatic breast cancer who completed a first line chemotherapy with trastuzumab and achieved a long terms response lasting more than 3 years were randomized to receive 3 cycles of 600 mg fixed-dose H-SC, followed by 3 cycles of standard H-IV, or the reverse sequence.
Purpose: The present study aimed to characterize the etiology of exercise-induced neuromuscular fatigue and its consequences on the force-duration relationship to provide mechanistic insights into the reduced exercise capacity characterizing early-stage breast cancer patients.
Methods: Fifteen early-stage breast cancer patients and fifteen healthy women performed 60 maximal voluntary isometric quadriceps contractions (MVCs, 3 s of contraction, 2 s of relaxation). The critical force was determined as the mean force of the last six contractions, while W' was calculated as the force impulse generated above the critical force.
Background: The TROIKA trial established that HD201 and trastuzumab were equivalent in terms of primary endpoints (total pathological complete response) following neoadjuvant treatment. The objective of the present analysis was to compare survival outcomes and final safety.
Methods: In the TROIKA trial, patients with ERBB2-positive early breast cancer were randomized and treated with either HD201 or the referent trastuzumab.
Improving the tumor reoxygenation to sensitize the tumor to radiation therapy is a cornerstone in radiation oncology. Here, the pre-clinical development of a clinically transferable liposomal formulation encapsulating trans sodium crocetinate (NP TSC) is reported to improve oxygen diffusion through the tumor environment. Early pharmacokinetic analysis of the clinical trial of this molecule performed on 37 patients orient to define the optimal fixed dosage to use in a triple-negative breast cancer model to validate the therapeutic combination of radiation therapy and NP TSC.
View Article and Find Full Text PDFBackground: Fatigue is a hallmark of breast cancer and is associated with skeletal muscle deconditioning. If cancer-related fatigue occurs early during chemotherapy (CT), the development of skeletal muscle deconditioning and its effect on exercise capacity remain unclear. The aim of this study was to investigate the evolution of skeletal muscle deconditioning and exercise capacity in patients with early-stage breast cancer during CT.
View Article and Find Full Text PDFBackground: Native mass spectrometry (nMS) approaches appear attractive to complement bottom-up strategies traditionally used in biopharmaceutical industries thanks to their quite straightforward and rapid workflows, especially through online hyphenation of non-denaturing liquid chromatography (LC) to nMS. The present work provides an overview of the state-of-the-art chromatographic tools available for the detailed characterization of monoclonal antibody (mAb) formats, exemplified on the antibody-drug conjugate (ADC) trastuzumab deruxtecan (T-DXd).
Methods: T-DXd was first characterized by conventional reversed phase LC (rpLC) and peptide mapping.
Background: Trastuzumab is used, alone or in conjunction with standard chemotherapy, to treat HER2-positive breast cancer (BC). Although it improves cancer outcomes, trastuzumab. can lead to cardiotoxicity.
View Article and Find Full Text PDFChemotherapy is a common therapy to treat patients with breast cancer but also leads to skeletal muscle deconditioning. Skeletal muscle deconditioning is multifactorial and intermuscular adipose tissue (IMAT) accumulation is closely linked to muscle dysfunction. To date, there is no clinical study available investigating IMAT development through a longitudinal protocol and the underlying mechanisms remain unknown.
View Article and Find Full Text PDFAim: To report the final results of the 5-year follow-up of the non-randomized SafeHER Phase III study (NCT01566721) describing the safety, tolerability, and efficacy of subcutaneous (SC) trastuzumab alone and in combination with concurrent or sequential chemotherapy.
Methods: Patients with human epidermal growth factor receptor 2 (HER2)-positive early breast cancer (EBC) with no prior anti-HER2 therapy were included. SC trastuzumab was administered every 3 weeks for 18 cycles as adjuvant therapy with or without chemotherapy (concurrent or sequential).
J Cachexia Sarcopenia Muscle
June 2022
Background: Chemotherapy is extensively used to treat breast cancer and is associated with skeletal muscle deconditioning, which is known to reduce patients' quality of life, treatment efficiency, and overall survival. To date, skeletal muscle mitochondrial alterations represent a major aspect explored in breast cancer patients; nevertheless, the cellular mechanisms remain relatively unknown. This study was dedicated to investigating overall skeletal muscle mitochondrial homeostasis in early breast cancer patients undergoing chemotherapy, including mitochondrial quantity, function, and dynamics.
View Article and Find Full Text PDFTumor-targeted antibody (mAb)/fragment-conjugated nanoparticles (NPs) represent an innovative strategy for improving the local delivery of small molecules. However, the physicochemical properties of full mAb-NPs and fragment-NPs-that is, NP material, size, charge, as well as the targeting antibody moiety, and the linker conjugation strategies-remain to be optimized to achieve an efficient tumor targeting. A meta-analysis of 161 peer-reviewed studies is presented, which describes the use of tumor-targeted mAb-NPs and fragment-NPs from 2009 to 2021.
View Article and Find Full Text PDFImportance: The drug HD201 is a biosimilar candidate for breast cancer treatment as the reference trastuzumab.
Objective: To compare the efficacy of HD201 with referent trastuzumab.
Design, Setting, And Participants: This randomized clinical trial (TROIKA) included 502 women with ERBB2-positive early breast cancer treated with either HD201 or referent trastuzumab.
Endocrine therapy (ET) for the treatment of patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR-positive/HER2-negative) metastatic breast cancer (MBC) has changed markedly over recent years with the emergence of new ETs and the use of molecularly targeted agents. Cytotoxic chemotherapy continues, however, to have an important role in these patients and it is important to maximize its efficacy while minimizing toxicity to optimize outcomes. This review examines current HR-positive/HER2-negative MBC clinical guidelines and addresses key questions around the use of chemotherapy in the face of emerging therapeutic options.
View Article and Find Full Text PDFCurrent clinical imaging modalities for the sensitive and specific detection of multiple myeloma (MM) rely on nonspecific imaging contrast agents based on gadolinium chelates for magnetic resonance imaging (MRI) or for F-FDG-directed and combined positron emission tomography (PET) and computed tomography (CT) scans. These tracers are not, however, able to detect minute plasma cell populations in the tumor niche, leading to false negative results. Here, a novel PET-based anti-BCMA nanoplatform labeled with Cu is developed to improve the monitoring of these cells in both the spine and femur and to compare its sensitivity and specificity to more conventional immunoPET ( Cu labeled anti-BCMA antibody) and passively targeted PET radiotracers ( CuCl and F-FDG).
View Article and Find Full Text PDF