Publications by authors named "Xavier Pennec"

Every brain is unique, having its structural and functional organization shaped by both genetic and environmental factors over the course of its development. Brain image studies tend to produce results by averaging across a group of subjects, under the common assumption that it is possible to subdivide the cortex into homogeneous areas while maintaining a correspondence across subjects. We investigate this assumption: can the structural properties of a specific region of an atlas be assumed to be the same across subjects? This question is addressed by looking at the network representation of the brain, with nodes corresponding to brain regions and edges to their structural relationships.

View Article and Find Full Text PDF

Background: Markers of left atrial (LA) shape may improve the prediction of postablation outcomes in atrial fibrillation (AF). Correlations to LA volume and AF persistence limit their incremental value over current clinical predictors.

Objective: To develop a shape score independent from AF persistence and LA volume using shape-based statistics, and to test its ability to predict postablation outcome.

View Article and Find Full Text PDF

Importance: Despite more widely accessible combination antiretroviral therapy (cART), HIV-1 infection remains a global public health challenge. Even in treated patients with chronic HIV infection, neurocognitive impairment often persists, affecting quality of life. Identifying the neuroanatomical pathways associated with infection in vivo may delineate the neuropathologic processes underlying these deficits.

View Article and Find Full Text PDF

The Multidomain Alzheimer Preventive Trial was designed to assess the effect of omega-3 supplementation and multidomain intervention on cognitive decline of subjects with subjective memory complaint. In terms of cognitive testing, no significant effect was found. In this paper, we evaluate the effect of the interventions on the brain morphological changes.

View Article and Find Full Text PDF

In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed along specific trajectories to match subject specific morphologies.

View Article and Find Full Text PDF

Personalised cardiac models are a virtual representation of the patient heart, with parameter values for which the simulation fits the available clinical measurements. Models usually have a large number of parameters while the available data for a given patient are typically limited to a small set of measurements; thus, the parameters cannot be estimated uniquely. This is a practical obstacle for clinical applications, where accurate parameter values can be important.

View Article and Find Full Text PDF

Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment.

View Article and Find Full Text PDF

Cardiac disease can reduce the ability of the ventricles to function well enough to sustain long-term pumping efficiency. Recent advances in cardiac motion tracking have led to improvements in the analysis of cardiac function. We propose a method to study cohort effects related to age with respect to cardiac function.

View Article and Find Full Text PDF

One major challenge when trying to build low-dimensional representation of the cardiac motion is its natural circular pattern during a cycle, therefore making the mean image a poor descriptor of the whole sequence. Therefore, traditional approaches for the analysis of the cardiac deformation use one specific frame of the sequence - the end-diastolic (ED) frame - as a reference to study the whole motion. Consequently, this methodology is biased by this empirical choice.

View Article and Find Full Text PDF

Personalised computational models of the heart are of increasing interest for clinical applications due to their discriminative and predictive abilities. However, the simulation of a single heartbeat with a 3D cardiac electromechanical model can be long and computationally expensive, which makes some practical applications, such as the estimation of model parameters from clinical data (the personalisation), very slow. Here we introduce an original multifidelity approach between a 3D cardiac model and a simplified "0D" version of this model, which enables to get reliable (and extremely fast) approximations of the global behaviour of the 3D model using 0D simulations.

View Article and Find Full Text PDF

Purpose: Spring-assisted cranioplasty is performed to correct the long and narrow head shape of children with sagittal synostosis. Such corrective surgery involves osteotomies and the placement of spring-like distractors, which gradually expand to widen the skull until removal about 4 months later. Due to its dynamic nature, associations between surgical parameters and post-operative 3D head shape features are difficult to comprehend.

View Article and Find Full Text PDF

This paper presents a simulator tool that can simulate large databases of visually realistic longitudinal MRIs with known volume changes. The simulator is based on a previously proposed biophysical model of brain deformation due to atrophy in AD. In this work, we propose a novel way of reproducing realistic intensity variation in longitudinal brain MRIs, which is inspired by an approach used for the generation of synthetic cardiac sequence images.

View Article and Find Full Text PDF

Objective: Today's growing medical image databases call for novel processing tools to structure the bulk of data and extract clinically relevant information. Unsupervised hierarchical clustering may reveal clusters within anatomical shape data of patient populations as required for modern precision medicine strategies. Few studies have applied hierarchical clustering techniques to three-dimensional patient shape data and results depend heavily on the chosen clustering distance metrics and linkage functions.

View Article and Find Full Text PDF

Statistical shape modeling is a powerful tool for visualizing and quantifying geometric and functional patterns of the heart. After myocardial infarction (MI), the left ventricle typically remodels in response to physiological challenges. Several methods have been proposed in the literature to describe statistical shape changes.

View Article and Find Full Text PDF

Objectives: Even after successful aortic coarctation repair, there remains a significant incidence of late systemic hypertension and other morbidities. Independently of residual obstruction, aortic arch morphology alone may affect cardiac function and outcome. We sought to uncover the relationship of arch 3-dimensional shape features with functional data obtained from cardiac magnetic resonance scans.

View Article and Find Full Text PDF

Background: Aortic arch reconstruction after hypoplastic left heart syndrome (HLHS) palliation can vary widely in shape and dimensions between patients. Arch morphology alone may affect cardiac function and outcome. We sought to uncover the relationship of arch three-dimensional shape features with functional and short-term outcome data after total cavopulmonary connection (TCPC).

View Article and Find Full Text PDF

We propose and detail a deformation-based morphometry computational framework, called Longitudinal Log-Demons Framework (LLDF), to estimate the longitudinal brain deformations from image data series, transport them in a common space and perform statistical group-wise analyses. It is based on freely available software and tools, and consists of three main steps: (i) Pre-processing, (ii) Position correction, and (iii) Non-linear deformation analysis. It is based on the LCC log-Demons non-linear symmetric diffeomorphic registration algorithm with an additional modulation of the similarity term using a confidence mask to increase the robustness with respect to brain boundary intensity artifacts.

View Article and Find Full Text PDF

Background: Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance.

View Article and Find Full Text PDF

We propose a framework for developing a comprehensive biophysical model that could predict and simulate realistic longitudinal MRIs of patients with Alzheimer's disease (AD). The framework includes three major building blocks: i) atrophy generation, ii) brain deformation, and iii) realistic MRI generation. Within this framework, this paper focuses on a detailed implementation of the brain deformation block with a carefully designed biomechanics-based tissue loss model.

View Article and Find Full Text PDF

Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models.

View Article and Find Full Text PDF

Given that heart disease can cause abnormal motion dynamics over the cardiac cycle, understanding and quantifying cardiac motion can provide insight for clinicians to aid with diagnosis, therapy planning, and determining prognosis. The goal of this paper is to extract population-specific motion patterns from 3D displacements in order to identify the mean motion in a population, and to describe pathology-specific motion patterns in terms of the spatial and temporal components. Since there are common motion patterns observed in patients with the same condition, extracting these can lead towards a better understanding of the disease.

View Article and Find Full Text PDF

This paper proposes a model of brain deformation triggered by atrophy in Alzheimer's Disease (AD). We introduce a macroscopic biophysical model assuming that the density of the brain remains constant, hence its volume shrinks when neurons die in AD. The deformation in the brain parenchyma minimizes the elastic strain energy with the prescribed local volume loss.

View Article and Find Full Text PDF

The morphology observed in the brains of patients affected by Alzheimer's disease (AD) is a combination of different biological processes, such as normal aging and the pathological matter loss specific to AD. The ability to differentiate between these biological factors is fundamental to reliably evaluate pathological AD-related structural changes, especially in the earliest phase of the disease, at prodromal and preclinical stages. Here we propose a method based on non-linear image registration to estimate and analyze from observed brain morphologies the relative contributions from aging and pathology.

View Article and Find Full Text PDF

Given the observed abnormal motion dynamics of patients with heart conditions, quantifying cardiac motion in both normal and pathological cases can provide useful insights for therapy planning. In order to be able to analyse the motion over multiple subjects in a robust manner, it is desirable to represent the motion by a low number of parameters. We propose a reduced order cardiac motion model, reduced in space through a polyaffine model, and reduced in time by statistical model order reduction.

View Article and Find Full Text PDF

Anatomical changes like brain atrophy or growth are usually not homogeneous in space and across spatial scales, since they map differently depending on the anatomical structures. Thus, the accurate analysis of volume changes from medical images requires to reliably localize and distinguish the spatial changes occurring at different scales, from voxel to regional level. We propose here a framework for the sparse probabilistic scale-space analysis of volume changes encoded by deformations.

View Article and Find Full Text PDF