In biosensor development, silk fibroin is advantageous for providing transparent, flexible, chemically/mechanically stable, biocompatible, and sustainable substrates, where the biorecognition element remains functional for long time periods. These properties are employed here in the production of point-of-care biosensors for resource-limited regions, which are able to display glucose levels without the need for external instrumentation. These biosensors are produced by photopatterning silk films doped with the enzymes glucose oxidase and peroxidase and photoelectrochromic molecules from the dithienylethene family acting as colorimetric mediators of the enzymatic reaction.
View Article and Find Full Text PDFCardiovascular diseases cause a high number of deaths nowadays. To improve these statistics, new strategies to better understand the electrical and mechanical abnormalities underlying them are urgently required. This study focuses on the development of a sensor to measure tissue stretch in excised tissues, enabling improved knowledge of biomechanical properties and allowing greater control in real time.
View Article and Find Full Text PDFThe early detection of very low bacterial concentrations is key to minimize the healthcare and safety issues associated with microbial infections, food poisoning or water pollution. In amperometric integrated circuits for electrochemical sensors, flicker noise is still the main bottleneck to achieve ultrasensitive detection with small footprint, cost-effective and ultra-low power instrumentation. Current strategies rely on autozeroing or chopper stabilization causing negative impacts on chip size and power consumption.
View Article and Find Full Text PDFEarly detection and identification of microbial contaminants is crucial in many sectors, including clinical diagnostics, food quality control and environmental monitoring. Biosensors have recently gained attention among other bacterial detection technologies due to their simplicity, rapid response, selectivity, and integration/miniaturization potential in portable microfluidic platforms. However, biosensors are limited to the analysis of small sample volumes, and pre-concentration steps are necessary to reach the low sensitivity levels of few bacteria per mL required in the analysis of real clinical, industrial or environmental samples.
View Article and Find Full Text PDFThe detection of living organisms at very low concentrations is necessary for the early diagnosis of bacterial infections, but it is still challenging as there is a need for signal amplification. Cell culture, nucleic acid amplification, or nanostructure-based signal enhancement are the most common amplification methods, relying on long, tedious, complex, or expensive procedures. Here, we present a cyanotype-based photochemical amplification reaction enabling the detection of low bacterial concentrations up to a single-cell level.
View Article and Find Full Text PDFMicrobial detection is crucial for the control and prevention of infectious diseases, being one of the leading causes of mortality worldwide. Among the techniques developed for bacterial detection, those based on metabolic indicators are progressively gaining interest due to their simplicity, adaptability, and, most importantly, their capacity to differentiate between live and dead bacteria. Prussian blue (PB) may act as a metabolic indicator, being reduced by bacterial metabolism, producing a visible color change from blue to colorless.
View Article and Find Full Text PDFSepsis is a serious bloodstream infection where the immunity of the host body is compromised, leading to organ failure and death of the patient. In early sepsis, the concentration of bacteria is very low and the time of diagnosis is very critical since mortality increases exponentially with every hour after infection. Common culture-based methods fail in fast bacteria determination, while recent rapid diagnostic methods are expensive and prone to false positives.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2021
The application of molecular switches for the fabrication of multistimuli-responsive chromic materials and devices still remains a challenge because of the restrictions imposed by the supporting solid matrices where these compounds must be incorporated: they often critically affect the chromic response as well as limit the type and nature of external stimuli that can be applied. In this work, we propose the use of ionogels to overcome these constraints, as they provide a soft, fluidic, transparent, thermally stable, and ionic-conductive environment where molecular switches preserve their solution-like properties and can be exposed to a number of different stimuli. By exploiting this strategy, we herein pioneer the preparation of nitrospiropyran-based materials using a single solid platform that exhibit optimal photo-, halo-, thermo-, and electrochromic switching behaviors.
View Article and Find Full Text PDFIn optical biosensing, silk fibroin (SF) appears as a promising alternative where other materials, such as paper, find limitations. Besides its excellent optical properties and unmet capacity to stabilize biomacromolecules, SF in test strips exhibits additional functions, i.e.
View Article and Find Full Text PDFCyanobacterial blooms produce hazardous toxins, deplete oxygen, and secrete compounds that confer undesirable organoleptic properties to water. To prevent bloom appearance, the World Health Organization has established an alert level between 500 and 2000 cells·mL, beyond the capabilities of most optical sensors detecting the cyanobacteria fluorescent pigments. Flow cytometry, cell culturing, and microscopy may reach these detection limits, but they involve both bulky and expensive laboratory equipment or long and tedious protocols.
View Article and Find Full Text PDFHygiene assessment in industrial and clinical environments is crucial in the prevention of health risks. Current technologies for routine cleanliness evaluation rely on the detection of specific biomolecules, thus requiring more than one test for broad-range screening. Herein, the modulation of the catalytic activity of gold nanoparticles (AuNPs) by biomacromolecules was employed to develop a nanoplasmonic platform for general hygiene screening.
View Article and Find Full Text PDFIn healthcare facilities, environmental microbes are responsible for numerous infections leading to patient's health complications and even death. The detection of the pathogens present on contaminated surfaces is crucial, although not always possible with current microbial detection technologies requiring sample collection and transfer to the laboratory. Based on a simple sonochemical coating process, smart hospital fabrics with the capacity to detect live bacteria by a simple change of colour are presented here.
View Article and Find Full Text PDFIn sample pre-treatment, millifluidic electromembrane platforms have been developed to extract and pre-concentrate target molecules with good clean-up that minimize matrix effects. Optimal operation conditions are normally determined experimentally, repeating the extractions at different conditions and determining the efficiencies by an analytical technique. To shorten and simplify the optimization protocol, millifluidic platforms have been electrically characterized by impedance spectroscopy.
View Article and Find Full Text PDFIn the development of colorimetric biosensors, the use of electrochromic mediators has been accepted and widely used during decades. The main drawback of these types of enzymatic substrates is the difficult recovery of the initial redox state of the molecule, which can be done electrochemically or by antioxidants addition, complicating the initially simple structure of the biosensor. those strategies are rarely followed Actually, being the disposable biosensor configuration the most extended for this detection mechanisms.
View Article and Find Full Text PDFIn vitro analysis requires cell proliferation in conditions close to physiological ones. Lab-on-a-chip (LoC) devices simplify, miniaturize and automate traditional protocols, with the advantages of being less expensive and faster due to their shorter diffusion distances. The main limitation of current LoCs is still the control of the culture conditions.
View Article and Find Full Text PDFCardiovascular diseases are the first cause of death globally. Their early diagnosis requires ultrasensitive tools enabling the detection of minor structural and functional alterations in small arteries. Such analyses have been traditionally performed with video imaging-based myographs, which helped to investigate the pathophysiology of the microvessels.
View Article and Find Full Text PDFIn multiplexed analysis, lab on a chip (LoC) devices are advantageous due to the low sample and reagent volumes required. Although optical detection is preferred for providing high sensitivity in a contactless configuration, multiplexed optical LoCs are limited by the technological complexity for integrating multiple light sources and detectors in a single device. To address this issue, we present a microfluidic-controlled optical router that enables measurement in four individual optical channels using a single light source and detector, and without movable parts.
View Article and Find Full Text PDFSince 1959 with the proposal of Double Agar Layer (DAL) method for phage detection and quantification, many sophisticated methods have emerged meanwhile. However, many of them are either too complex/expensive or insensitive to replace routine utilization of DAL method in clinical, environmental and industrial environments. For that purpose, we have explored an alternative method for the detection and quantification of bacteriophages that fulfills the criteria of being rapid, simple and inexpensive.
View Article and Find Full Text PDFAt the point of care (POC), on-side clinical testing allows fast biomarkers determination even in resource-limited environments. Current POC systems rely on tests selective to a single analyte or complex multiplexed systems with important portability and performance limitations. Hence, there is a need for handheld POC devices enabling the detection of multiple analytes with accuracy and simplicity.
View Article and Find Full Text PDFCellular activation and inflammation leading to endothelial dysfunction is associated with cardiovascular disease (CVD). We investigated whether a single cell label-free multi parameter optical interrogation system can detect endothelial cell and endothelial progenitor cell (EPC) activation in vitro and ex vivo, respectively. Cultured human endothelial cells were exposed to increasing concentrations of tumour necrosis factor alpha (TNF-α) or lipopolysaccharide (LPS) before endothelial activation was validated using fluorescence-activated cell sorting (FACS) analysis of inflammatory marker expression (PECAM-1, E-selectin and ICAM-1).
View Article and Find Full Text PDFThe determination of ethanol intoxication in whole blood samples may open the opportunity for a precise and quick point-of-measurement in the ambit of medical emergency or law enforcement. In contrast with traditional techniques based on breath sampling, direct blood measurements present greater immunity to errors specially in case of unconscious or non-collaborative patients. In this context, a portable, sensitive and easy-to-use instrument is highly desirable.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2018
Materials science offers new perspectives in the clinical analysis of antimicrobial sensitivity. However, a biomaterial with the capacity to respond to living bacteria has not been developed to date. We present an electrochromic iron(III)-complexed alginate hydrogel sensitive to bacterial metabolism, here applied to fast antibiotic-susceptibility determination.
View Article and Find Full Text PDFThis paper presents the study of the dynamics of the formation of polymer-assisted highly-orientated polycrystalline cubic structures (CS) by a fractal-mediated mechanism. This mechanism involves the formation of seed Ag@Co nanoparticles by InterMatrix Synthesis and subsequent overgrowth after incubation at a low temperature in chloride and phosphate solutions. These ions promote the dissolution and recrystallization in an ordered configuration of pre-synthetized nanoparticles initially embedded in negatively-charged polymeric matrices.
View Article and Find Full Text PDFThe integration of detection mechanisms with microfluidics may be one of the most promising routes towards widespread application of Lab-on-a-Chip (LoC) devices. Photonic detection methods like in the so-called Photonic Lab-on-a-Chip (PhLoC) have advantages such as being non-invasive, easy to sterilize and highly sensitive even with short integration times and thus allow in situ monitoring and quantification of biological and chemical processes. The readout of such detection methods usually requires special training of potential users, as in most cases they are confronted with the need of establishing fiber-optics connections to and from the PhLoC and/or rely on the use of complex laboratory equipment.
View Article and Find Full Text PDFThe integration of micro-optical elements with microfluidics leads to the highly promising photonic lab-on-a-chip analytical systems (PhLoCs). In this work, we re-examine the main principles which are underneath the on-chip spectrophotometric detection, approaching the PhLoC concept to a nonexpert audience.
View Article and Find Full Text PDF