Publications by authors named "Xavier Machuron-Mandard"

A novel hyphenated technique, namely the combination of stir bar sorptive extraction (SBSE) with isotope dilution direct analysis in real time (DART) Orbitrap™ mass spectrometry (OT-MS) is presented for the extraction of phosphoric acid alkyl esters (tri- (TnBP), di- (HDBP), and mono-butyl phosphate (H2MBP)) from aqueous samples. First, SBSE of phosphate esters was performed using a Twister™ coated with 24 μL of polydimethylsiloxane (PDMS) as the extracting phase. SBSE was optimized for extraction pH, phase ratio (PDMS volume/aqueous phase volume), stirring speed, extraction time and temperature.

View Article and Find Full Text PDF

Explosive detection and identification play an important role in the environmental and forensic sciences. However, accurate identification of isomeric compounds remains a challenging task for current analytical methods. The combination of electrospray multistage mass spectrometry (ESI-MS(n) ) and high resolution mass spectrometry (HRMS) is a powerful tool for the structure characterization of isomeric compounds.

View Article and Find Full Text PDF

Rationale: 2,4-Dinitrotoluene (2,4-DNT) is a nitroaromatic explosive which is commonly found in environmental samples close to training points, firing places, and manufacturers. Mass spectrometry analysis of this compound shows one main product ion that distinguishes it from the other isomers of DNT. We present here a detailed mechanistic study on the formation of this ion.

View Article and Find Full Text PDF

Reproducibility among different types of excitation modes is a major bottleneck in the field of tandem mass spectrometry library development in metabolomics. In this study, we specifically evaluated the influence of collision voltage and activation time parameters on tandem mass spectrometry spectra for various excitation modes [collision-induced dissociation (CID), pulsed Q dissociation (PQD) and higher-energy collision dissociation (HCD)] of Orbitrap-based instruments. For this purpose, internal energy deposition was probed using an approach based on Rice-Rampserger-Kassel-Marcus modeling with three thermometer compounds of different degree of freedom (69, 228 and 420) and a thermal model.

View Article and Find Full Text PDF

Rationale: Despite the widespread use of direct analysis in real time mass spectrometry (DART-MS), its capabilities in terms of accessible mass range and the types of polymers that can be analysed are not well known. The goal of this work was to evaluate the capabilities and limitations of this ionization technique combined with orbitrap mass spectrometry and tandem mass spectrometry, for the characterization (structural and polydispersity metrics) of various synthetic and natural polymers.

Methods: The capabilities and limitations of DART-MS (and -MS(2)), using an orbitrap mass spectrometer, for polymer analysis were evaluated using various industrial synthetic polymers and biopolymers.

View Article and Find Full Text PDF

Organophosphorus compounds have played important roles as pesticides, chemical warfare agents and extractors of radioactive material. Structural elucidation of phosphonates poses a particular challenge because their initial forms can be hydrolyzed, thus, degradation products may predominate in samples acquired in the field. The analysis of non-volatile organophosphorus compounds and their degradation products is possible using electrospray tandem mass spectrometry ESI-MS/MS.

View Article and Find Full Text PDF

The reactivity of the explosive tetryl (N-methyl-N,2,4,6-tetranitroaniline; Mw = 287 u) was studied using electrospray ionization in negative mode. The main species detected in the spectrum corresponds to the ion observed at m/z 318 (previously assumed to be the odd-electron ion [tetryl + HNO](-•), C7H6O9N6). In this study, we show using D-labeling combined with high-resolution mass spectrometry that this species corresponds to an even-electron anion (i.

View Article and Find Full Text PDF

Control of the ion internal energy in mass spectrometry is needed to establish a workable mass spectral library. The purpose of this study is to understand and to compare the pressure effects on the collision-induced dissociation (CID) spectrum pattern recorded using triple quadrupole instruments. The monoprotonated Leucine enkephalin [YGGFL, H(+)] was used as a thermometer molecule to calibrate the electrospray ionization (ESI) and the CID internal energies deposited on the molecular species and the time scale of ion decompositions.

View Article and Find Full Text PDF

The introduction of chloroform into the nebulising gas of a LC/MS electrospray interface (ESI), in a perfectly controlled way, leads to the formation of intense adducts ([M+Cl](-)) when a mobile phase containing HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane or octogen) and RDX (1,3,5-trintro-1,3,5-triazacyclohexane or hexogen) is eluted. This LC/MS method allows the direct analysis of aqueous samples containing HMX and RDX at the pictogram level without a concentration step. The method is used to determine HMX and RDX concentrations in ground water samples from a military site.

View Article and Find Full Text PDF